Evolution of Neurosurgical Robots: Historical Progress and Future Direction
In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents t...
Gespeichert in:
Veröffentlicht in: | World neurosurgery 2024-11, Vol.191, p.49-57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 49 |
container_title | World neurosurgery |
container_volume | 191 |
creator | Liu, Xi Liu, Feili Jin, Lei Wu, Jinsong |
description | In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery. |
doi_str_mv | 10.1016/j.wneu.2024.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090946027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875024013652</els_id><sourcerecordid>3090946027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EolXpH-CAcuTS4FdjG3FBpTwEAoTgbDnJpnKVxsWOi_j3JLT0yF52tZoZaT6ETglOCSbZxTL9aiCmFFOeYpliLA_QkEghJ1Jk6nB_T_EAjUNY4m4Y4VKwYzRgipBMcTpEj_ONq2NrXZO4KnmG6F2IfmELUydvLndtuEzubWid_329erfwEEJimjK5jW30kNxYD0WfcIKOKlMHGO_2CH3czt9n95Onl7uH2fXTpKBMtBMxzSUXghtaKclATnFpMlIqzA3juakyIQGUBK4IM4pJIivKcqA5Y3lZVDkbofNt7tq7zwih1SsbCqhr04CLQTOssOIZpqKT0q206HoFD5Vee7sy_lsTrHuOeql7jrrnqLHUHcfOdLbLj_kKyr3lj1onuNoKoGu5seB1KCw0BZS_KHTp7H_5P15UhDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090946027</pqid></control><display><type>article</type><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</creator><creatorcontrib>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</creatorcontrib><description>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2024.08.008</identifier><identifier>PMID: 39116942</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence - trends ; History, 20th Century ; History, 21st Century ; Humans ; Image guidance ; Magnetic resonance compatibility ; Navigation ; Neuronavigation - history ; Neuronavigation - instrumentation ; Neuronavigation - methods ; Neuronavigation - trends ; Neurosurgery ; Neurosurgery - history ; Neurosurgery - instrumentation ; Neurosurgery - trends ; Neurosurgical Procedures - history ; Neurosurgical Procedures - instrumentation ; Neurosurgical Procedures - methods ; Neurosurgical Procedures - trends ; Robotic Surgical Procedures - history ; Robotic Surgical Procedures - instrumentation ; Robotic Surgical Procedures - methods ; Robotic Surgical Procedures - trends ; Robotics ; Robotics - history ; Robotics - trends ; Surgery, Computer-Assisted - instrumentation ; Surgery, Computer-Assisted - methods ; Surgery, Computer-Assisted - trends</subject><ispartof>World neurosurgery, 2024-11, Vol.191, p.49-57</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</cites><orcidid>0000-0001-5630-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wneu.2024.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39116942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Liu, Feili</creatorcontrib><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</description><subject>Artificial Intelligence - trends</subject><subject>History, 20th Century</subject><subject>History, 21st Century</subject><subject>Humans</subject><subject>Image guidance</subject><subject>Magnetic resonance compatibility</subject><subject>Navigation</subject><subject>Neuronavigation - history</subject><subject>Neuronavigation - instrumentation</subject><subject>Neuronavigation - methods</subject><subject>Neuronavigation - trends</subject><subject>Neurosurgery</subject><subject>Neurosurgery - history</subject><subject>Neurosurgery - instrumentation</subject><subject>Neurosurgery - trends</subject><subject>Neurosurgical Procedures - history</subject><subject>Neurosurgical Procedures - instrumentation</subject><subject>Neurosurgical Procedures - methods</subject><subject>Neurosurgical Procedures - trends</subject><subject>Robotic Surgical Procedures - history</subject><subject>Robotic Surgical Procedures - instrumentation</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Robotic Surgical Procedures - trends</subject><subject>Robotics</subject><subject>Robotics - history</subject><subject>Robotics - trends</subject><subject>Surgery, Computer-Assisted - instrumentation</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgery, Computer-Assisted - trends</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EolXpH-CAcuTS4FdjG3FBpTwEAoTgbDnJpnKVxsWOi_j3JLT0yF52tZoZaT6ETglOCSbZxTL9aiCmFFOeYpliLA_QkEghJ1Jk6nB_T_EAjUNY4m4Y4VKwYzRgipBMcTpEj_ONq2NrXZO4KnmG6F2IfmELUydvLndtuEzubWid_329erfwEEJimjK5jW30kNxYD0WfcIKOKlMHGO_2CH3czt9n95Onl7uH2fXTpKBMtBMxzSUXghtaKclATnFpMlIqzA3juakyIQGUBK4IM4pJIivKcqA5Y3lZVDkbofNt7tq7zwih1SsbCqhr04CLQTOssOIZpqKT0q206HoFD5Vee7sy_lsTrHuOeql7jrrnqLHUHcfOdLbLj_kKyr3lj1onuNoKoGu5seB1KCw0BZS_KHTp7H_5P15UhDM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Liu, Xi</creator><creator>Liu, Feili</creator><creator>Jin, Lei</creator><creator>Wu, Jinsong</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5630-2081</orcidid></search><sort><creationdate>202411</creationdate><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><author>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence - trends</topic><topic>History, 20th Century</topic><topic>History, 21st Century</topic><topic>Humans</topic><topic>Image guidance</topic><topic>Magnetic resonance compatibility</topic><topic>Navigation</topic><topic>Neuronavigation - history</topic><topic>Neuronavigation - instrumentation</topic><topic>Neuronavigation - methods</topic><topic>Neuronavigation - trends</topic><topic>Neurosurgery</topic><topic>Neurosurgery - history</topic><topic>Neurosurgery - instrumentation</topic><topic>Neurosurgery - trends</topic><topic>Neurosurgical Procedures - history</topic><topic>Neurosurgical Procedures - instrumentation</topic><topic>Neurosurgical Procedures - methods</topic><topic>Neurosurgical Procedures - trends</topic><topic>Robotic Surgical Procedures - history</topic><topic>Robotic Surgical Procedures - instrumentation</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Robotic Surgical Procedures - trends</topic><topic>Robotics</topic><topic>Robotics - history</topic><topic>Robotics - trends</topic><topic>Surgery, Computer-Assisted - instrumentation</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgery, Computer-Assisted - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Liu, Feili</creatorcontrib><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xi</au><au>Liu, Feili</au><au>Jin, Lei</au><au>Wu, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2024-11</date><risdate>2024</risdate><volume>191</volume><spage>49</spage><epage>57</epage><pages>49-57</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39116942</pmid><doi>10.1016/j.wneu.2024.08.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5630-2081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-8750 |
ispartof | World neurosurgery, 2024-11, Vol.191, p.49-57 |
issn | 1878-8750 1878-8769 1878-8769 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090946027 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Artificial Intelligence - trends History, 20th Century History, 21st Century Humans Image guidance Magnetic resonance compatibility Navigation Neuronavigation - history Neuronavigation - instrumentation Neuronavigation - methods Neuronavigation - trends Neurosurgery Neurosurgery - history Neurosurgery - instrumentation Neurosurgery - trends Neurosurgical Procedures - history Neurosurgical Procedures - instrumentation Neurosurgical Procedures - methods Neurosurgical Procedures - trends Robotic Surgical Procedures - history Robotic Surgical Procedures - instrumentation Robotic Surgical Procedures - methods Robotic Surgical Procedures - trends Robotics Robotics - history Robotics - trends Surgery, Computer-Assisted - instrumentation Surgery, Computer-Assisted - methods Surgery, Computer-Assisted - trends |
title | Evolution of Neurosurgical Robots: Historical Progress and Future Direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Neurosurgical%20Robots:%20Historical%20Progress%20and%20Future%20Direction&rft.jtitle=World%20neurosurgery&rft.au=Liu,%20Xi&rft.date=2024-11&rft.volume=191&rft.spage=49&rft.epage=57&rft.pages=49-57&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2024.08.008&rft_dat=%3Cproquest_cross%3E3090946027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090946027&rft_id=info:pmid/39116942&rft_els_id=S1878875024013652&rfr_iscdi=true |