Evolution of Neurosurgical Robots: Historical Progress and Future Direction

In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World neurosurgery 2024-11, Vol.191, p.49-57
Hauptverfasser: Liu, Xi, Liu, Feili, Jin, Lei, Wu, Jinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 49
container_title World neurosurgery
container_volume 191
creator Liu, Xi
Liu, Feili
Jin, Lei
Wu, Jinsong
description In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.
doi_str_mv 10.1016/j.wneu.2024.08.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090946027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875024013652</els_id><sourcerecordid>3090946027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EolXpH-CAcuTS4FdjG3FBpTwEAoTgbDnJpnKVxsWOi_j3JLT0yF52tZoZaT6ETglOCSbZxTL9aiCmFFOeYpliLA_QkEghJ1Jk6nB_T_EAjUNY4m4Y4VKwYzRgipBMcTpEj_ONq2NrXZO4KnmG6F2IfmELUydvLndtuEzubWid_329erfwEEJimjK5jW30kNxYD0WfcIKOKlMHGO_2CH3czt9n95Onl7uH2fXTpKBMtBMxzSUXghtaKclATnFpMlIqzA3juakyIQGUBK4IM4pJIivKcqA5Y3lZVDkbofNt7tq7zwih1SsbCqhr04CLQTOssOIZpqKT0q206HoFD5Vee7sy_lsTrHuOeql7jrrnqLHUHcfOdLbLj_kKyr3lj1onuNoKoGu5seB1KCw0BZS_KHTp7H_5P15UhDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090946027</pqid></control><display><type>article</type><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</creator><creatorcontrib>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</creatorcontrib><description>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2024.08.008</identifier><identifier>PMID: 39116942</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence - trends ; History, 20th Century ; History, 21st Century ; Humans ; Image guidance ; Magnetic resonance compatibility ; Navigation ; Neuronavigation - history ; Neuronavigation - instrumentation ; Neuronavigation - methods ; Neuronavigation - trends ; Neurosurgery ; Neurosurgery - history ; Neurosurgery - instrumentation ; Neurosurgery - trends ; Neurosurgical Procedures - history ; Neurosurgical Procedures - instrumentation ; Neurosurgical Procedures - methods ; Neurosurgical Procedures - trends ; Robotic Surgical Procedures - history ; Robotic Surgical Procedures - instrumentation ; Robotic Surgical Procedures - methods ; Robotic Surgical Procedures - trends ; Robotics ; Robotics - history ; Robotics - trends ; Surgery, Computer-Assisted - instrumentation ; Surgery, Computer-Assisted - methods ; Surgery, Computer-Assisted - trends</subject><ispartof>World neurosurgery, 2024-11, Vol.191, p.49-57</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</cites><orcidid>0000-0001-5630-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wneu.2024.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39116942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Liu, Feili</creatorcontrib><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</description><subject>Artificial Intelligence - trends</subject><subject>History, 20th Century</subject><subject>History, 21st Century</subject><subject>Humans</subject><subject>Image guidance</subject><subject>Magnetic resonance compatibility</subject><subject>Navigation</subject><subject>Neuronavigation - history</subject><subject>Neuronavigation - instrumentation</subject><subject>Neuronavigation - methods</subject><subject>Neuronavigation - trends</subject><subject>Neurosurgery</subject><subject>Neurosurgery - history</subject><subject>Neurosurgery - instrumentation</subject><subject>Neurosurgery - trends</subject><subject>Neurosurgical Procedures - history</subject><subject>Neurosurgical Procedures - instrumentation</subject><subject>Neurosurgical Procedures - methods</subject><subject>Neurosurgical Procedures - trends</subject><subject>Robotic Surgical Procedures - history</subject><subject>Robotic Surgical Procedures - instrumentation</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Robotic Surgical Procedures - trends</subject><subject>Robotics</subject><subject>Robotics - history</subject><subject>Robotics - trends</subject><subject>Surgery, Computer-Assisted - instrumentation</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgery, Computer-Assisted - trends</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EolXpH-CAcuTS4FdjG3FBpTwEAoTgbDnJpnKVxsWOi_j3JLT0yF52tZoZaT6ETglOCSbZxTL9aiCmFFOeYpliLA_QkEghJ1Jk6nB_T_EAjUNY4m4Y4VKwYzRgipBMcTpEj_ONq2NrXZO4KnmG6F2IfmELUydvLndtuEzubWid_329erfwEEJimjK5jW30kNxYD0WfcIKOKlMHGO_2CH3czt9n95Onl7uH2fXTpKBMtBMxzSUXghtaKclATnFpMlIqzA3juakyIQGUBK4IM4pJIivKcqA5Y3lZVDkbofNt7tq7zwih1SsbCqhr04CLQTOssOIZpqKT0q206HoFD5Vee7sy_lsTrHuOeql7jrrnqLHUHcfOdLbLj_kKyr3lj1onuNoKoGu5seB1KCw0BZS_KHTp7H_5P15UhDM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Liu, Xi</creator><creator>Liu, Feili</creator><creator>Jin, Lei</creator><creator>Wu, Jinsong</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5630-2081</orcidid></search><sort><creationdate>202411</creationdate><title>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</title><author>Liu, Xi ; Liu, Feili ; Jin, Lei ; Wu, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-75b84774a2f983e850da61d904a34baf678ee98e4913a93818f23be2b33bdcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence - trends</topic><topic>History, 20th Century</topic><topic>History, 21st Century</topic><topic>Humans</topic><topic>Image guidance</topic><topic>Magnetic resonance compatibility</topic><topic>Navigation</topic><topic>Neuronavigation - history</topic><topic>Neuronavigation - instrumentation</topic><topic>Neuronavigation - methods</topic><topic>Neuronavigation - trends</topic><topic>Neurosurgery</topic><topic>Neurosurgery - history</topic><topic>Neurosurgery - instrumentation</topic><topic>Neurosurgery - trends</topic><topic>Neurosurgical Procedures - history</topic><topic>Neurosurgical Procedures - instrumentation</topic><topic>Neurosurgical Procedures - methods</topic><topic>Neurosurgical Procedures - trends</topic><topic>Robotic Surgical Procedures - history</topic><topic>Robotic Surgical Procedures - instrumentation</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Robotic Surgical Procedures - trends</topic><topic>Robotics</topic><topic>Robotics - history</topic><topic>Robotics - trends</topic><topic>Surgery, Computer-Assisted - instrumentation</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgery, Computer-Assisted - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Liu, Feili</creatorcontrib><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xi</au><au>Liu, Feili</au><au>Jin, Lei</au><au>Wu, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Neurosurgical Robots: Historical Progress and Future Direction</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2024-11</date><risdate>2024</risdate><volume>191</volume><spage>49</spage><epage>57</epage><pages>49-57</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39116942</pmid><doi>10.1016/j.wneu.2024.08.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5630-2081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1878-8750
ispartof World neurosurgery, 2024-11, Vol.191, p.49-57
issn 1878-8750
1878-8769
1878-8769
language eng
recordid cdi_proquest_miscellaneous_3090946027
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence - trends
History, 20th Century
History, 21st Century
Humans
Image guidance
Magnetic resonance compatibility
Navigation
Neuronavigation - history
Neuronavigation - instrumentation
Neuronavigation - methods
Neuronavigation - trends
Neurosurgery
Neurosurgery - history
Neurosurgery - instrumentation
Neurosurgery - trends
Neurosurgical Procedures - history
Neurosurgical Procedures - instrumentation
Neurosurgical Procedures - methods
Neurosurgical Procedures - trends
Robotic Surgical Procedures - history
Robotic Surgical Procedures - instrumentation
Robotic Surgical Procedures - methods
Robotic Surgical Procedures - trends
Robotics
Robotics - history
Robotics - trends
Surgery, Computer-Assisted - instrumentation
Surgery, Computer-Assisted - methods
Surgery, Computer-Assisted - trends
title Evolution of Neurosurgical Robots: Historical Progress and Future Direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Neurosurgical%20Robots:%20Historical%20Progress%20and%20Future%20Direction&rft.jtitle=World%20neurosurgery&rft.au=Liu,%20Xi&rft.date=2024-11&rft.volume=191&rft.spage=49&rft.epage=57&rft.pages=49-57&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2024.08.008&rft_dat=%3Cproquest_cross%3E3090946027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090946027&rft_id=info:pmid/39116942&rft_els_id=S1878875024013652&rfr_iscdi=true