Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization ca...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-08, Vol.26 (33), p.2249-2261 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2261 |
---|---|
container_issue | 33 |
container_start_page | 2249 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Vaneeckhaute, Ewoud Bocquelet, Charlotte Bellier, Léa Le, Huu-Nghia Rougier, Nathan Jegadeesan, Shebha Anandhi Vinod-Kumar, Sanjay Mathies, Guinevere Veyre, Laurent Thieuleux, Chloe Melzi, Roberto Banks, Daniel Kempf, James Stern, Quentin Jannin, Sami |
description | Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe ( |
doi_str_mv | 10.1039/d4cp02022g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090637543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095379621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-79d94282ddc969b0b0aa053d8b1d642f2d1ea58214dc1185301cdbbf19f1b4533</originalsourceid><addsrcrecordid>eNpdksFvFCEUxonR2Fq9eNeQeFGTVd7AMMOpaVbbmmyiBz0TBpgdGgZGmKlZ_3p3uttRe4K878cH730g9BLIByBUfDRMD6QgRbF9hE6BcboSpGaPl33FT9CznG8IIVACfYpOqABggpWnqL-cvMdxGF3vfqvRxYBji80uqN5pHCbtrUp4iF6lRQ9YYcCjzV7hxgbdjXG4R2zCv9zY4W432HSsubDFOXpn8nP0pFU-2xfH9Qz9uPz8fX292ny9-rK-2Kw0BT6uKmEEK-rCGC24aEhDlCIlNXUDhrOiLQxYVdYFMKMB6pIS0KZpWhAtNKyk9AydH3yHqemt0TaMSXk5JNertJNROfm_Elwnt_FWAlBSAZsd3h0cugfnri82cq4RxrkoobqFPfv2eFuKPyebR9m7rK33Ktg4ZUmJIJxW5Z3tmwfoTZxS2M9ipkpaCV7Mhu8PlE4x52Tb5QVA5By5_MTW3-4iv9rDr__tdUHvM94Drw5AynpR__4Z-gfjV7G1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095379621</pqid></control><display><type>article</type><title>Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Vaneeckhaute, Ewoud ; Bocquelet, Charlotte ; Bellier, Léa ; Le, Huu-Nghia ; Rougier, Nathan ; Jegadeesan, Shebha Anandhi ; Vinod-Kumar, Sanjay ; Mathies, Guinevere ; Veyre, Laurent ; Thieuleux, Chloe ; Melzi, Roberto ; Banks, Daniel ; Kempf, James ; Stern, Quentin ; Jannin, Sami</creator><creatorcontrib>Vaneeckhaute, Ewoud ; Bocquelet, Charlotte ; Bellier, Léa ; Le, Huu-Nghia ; Rougier, Nathan ; Jegadeesan, Shebha Anandhi ; Vinod-Kumar, Sanjay ; Mathies, Guinevere ; Veyre, Laurent ; Thieuleux, Chloe ; Melzi, Roberto ; Banks, Daniel ; Kempf, James ; Stern, Quentin ; Jannin, Sami</creatorcontrib><description>Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm
−3
) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.
In a benchtop DNP polarizer operating at 1 T and 77 K, signal enhancements up to 100 generated in less than a second are reported for nitroxide radicals optimized in terms of concentration both in solvated and immobilized form.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp02022g</identifier><identifier>PMID: 39114945</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; Chemistry ; Electron paramagnetic resonance ; Freezing ; NMR ; Nuclear magnetic resonance ; or physical chemistry ; Polarization ; Polarizers ; Theoretical and</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-08, Vol.26 (33), p.2249-2261</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © the Owner Societies 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-79d94282ddc969b0b0aa053d8b1d642f2d1ea58214dc1185301cdbbf19f1b4533</cites><orcidid>0009-0000-3833-5031 ; 0000-0003-2681-6246 ; 0000-0002-2719-0743 ; 0000-0002-4805-8418 ; 0000-0002-8877-4929 ; 0000-0002-8490-030X ; 0000-0001-8847-1939 ; 0000-0002-5436-2467 ; 0000-0003-2352-7457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39114945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04669517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaneeckhaute, Ewoud</creatorcontrib><creatorcontrib>Bocquelet, Charlotte</creatorcontrib><creatorcontrib>Bellier, Léa</creatorcontrib><creatorcontrib>Le, Huu-Nghia</creatorcontrib><creatorcontrib>Rougier, Nathan</creatorcontrib><creatorcontrib>Jegadeesan, Shebha Anandhi</creatorcontrib><creatorcontrib>Vinod-Kumar, Sanjay</creatorcontrib><creatorcontrib>Mathies, Guinevere</creatorcontrib><creatorcontrib>Veyre, Laurent</creatorcontrib><creatorcontrib>Thieuleux, Chloe</creatorcontrib><creatorcontrib>Melzi, Roberto</creatorcontrib><creatorcontrib>Banks, Daniel</creatorcontrib><creatorcontrib>Kempf, James</creatorcontrib><creatorcontrib>Stern, Quentin</creatorcontrib><creatorcontrib>Jannin, Sami</creatorcontrib><title>Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm
−3
) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.
In a benchtop DNP polarizer operating at 1 T and 77 K, signal enhancements up to 100 generated in less than a second are reported for nitroxide radicals optimized in terms of concentration both in solvated and immobilized form.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Freezing</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>or physical chemistry</subject><subject>Polarization</subject><subject>Polarizers</subject><subject>Theoretical and</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdksFvFCEUxonR2Fq9eNeQeFGTVd7AMMOpaVbbmmyiBz0TBpgdGgZGmKlZ_3p3uttRe4K878cH730g9BLIByBUfDRMD6QgRbF9hE6BcboSpGaPl33FT9CznG8IIVACfYpOqABggpWnqL-cvMdxGF3vfqvRxYBji80uqN5pHCbtrUp4iF6lRQ9YYcCjzV7hxgbdjXG4R2zCv9zY4W432HSsubDFOXpn8nP0pFU-2xfH9Qz9uPz8fX292ny9-rK-2Kw0BT6uKmEEK-rCGC24aEhDlCIlNXUDhrOiLQxYVdYFMKMB6pIS0KZpWhAtNKyk9AydH3yHqemt0TaMSXk5JNertJNROfm_Elwnt_FWAlBSAZsd3h0cugfnri82cq4RxrkoobqFPfv2eFuKPyebR9m7rK33Ktg4ZUmJIJxW5Z3tmwfoTZxS2M9ipkpaCV7Mhu8PlE4x52Tb5QVA5By5_MTW3-4iv9rDr__tdUHvM94Drw5AynpR__4Z-gfjV7G1</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Vaneeckhaute, Ewoud</creator><creator>Bocquelet, Charlotte</creator><creator>Bellier, Léa</creator><creator>Le, Huu-Nghia</creator><creator>Rougier, Nathan</creator><creator>Jegadeesan, Shebha Anandhi</creator><creator>Vinod-Kumar, Sanjay</creator><creator>Mathies, Guinevere</creator><creator>Veyre, Laurent</creator><creator>Thieuleux, Chloe</creator><creator>Melzi, Roberto</creator><creator>Banks, Daniel</creator><creator>Kempf, James</creator><creator>Stern, Quentin</creator><creator>Jannin, Sami</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-3833-5031</orcidid><orcidid>https://orcid.org/0000-0003-2681-6246</orcidid><orcidid>https://orcid.org/0000-0002-2719-0743</orcidid><orcidid>https://orcid.org/0000-0002-4805-8418</orcidid><orcidid>https://orcid.org/0000-0002-8877-4929</orcidid><orcidid>https://orcid.org/0000-0002-8490-030X</orcidid><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-5436-2467</orcidid><orcidid>https://orcid.org/0000-0003-2352-7457</orcidid></search><sort><creationdate>20240822</creationdate><title>Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids</title><author>Vaneeckhaute, Ewoud ; Bocquelet, Charlotte ; Bellier, Léa ; Le, Huu-Nghia ; Rougier, Nathan ; Jegadeesan, Shebha Anandhi ; Vinod-Kumar, Sanjay ; Mathies, Guinevere ; Veyre, Laurent ; Thieuleux, Chloe ; Melzi, Roberto ; Banks, Daniel ; Kempf, James ; Stern, Quentin ; Jannin, Sami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-79d94282ddc969b0b0aa053d8b1d642f2d1ea58214dc1185301cdbbf19f1b4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Freezing</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>or physical chemistry</topic><topic>Polarization</topic><topic>Polarizers</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaneeckhaute, Ewoud</creatorcontrib><creatorcontrib>Bocquelet, Charlotte</creatorcontrib><creatorcontrib>Bellier, Léa</creatorcontrib><creatorcontrib>Le, Huu-Nghia</creatorcontrib><creatorcontrib>Rougier, Nathan</creatorcontrib><creatorcontrib>Jegadeesan, Shebha Anandhi</creatorcontrib><creatorcontrib>Vinod-Kumar, Sanjay</creatorcontrib><creatorcontrib>Mathies, Guinevere</creatorcontrib><creatorcontrib>Veyre, Laurent</creatorcontrib><creatorcontrib>Thieuleux, Chloe</creatorcontrib><creatorcontrib>Melzi, Roberto</creatorcontrib><creatorcontrib>Banks, Daniel</creatorcontrib><creatorcontrib>Kempf, James</creatorcontrib><creatorcontrib>Stern, Quentin</creatorcontrib><creatorcontrib>Jannin, Sami</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaneeckhaute, Ewoud</au><au>Bocquelet, Charlotte</au><au>Bellier, Léa</au><au>Le, Huu-Nghia</au><au>Rougier, Nathan</au><au>Jegadeesan, Shebha Anandhi</au><au>Vinod-Kumar, Sanjay</au><au>Mathies, Guinevere</au><au>Veyre, Laurent</au><au>Thieuleux, Chloe</au><au>Melzi, Roberto</au><au>Banks, Daniel</au><au>Kempf, James</au><au>Stern, Quentin</au><au>Jannin, Sami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>26</volume><issue>33</issue><spage>2249</spage><epage>2261</epage><pages>2249-2261</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm
−3
) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.
In a benchtop DNP polarizer operating at 1 T and 77 K, signal enhancements up to 100 generated in less than a second are reported for nitroxide radicals optimized in terms of concentration both in solvated and immobilized form.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39114945</pmid><doi>10.1039/d4cp02022g</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-3833-5031</orcidid><orcidid>https://orcid.org/0000-0003-2681-6246</orcidid><orcidid>https://orcid.org/0000-0002-2719-0743</orcidid><orcidid>https://orcid.org/0000-0002-4805-8418</orcidid><orcidid>https://orcid.org/0000-0002-8877-4929</orcidid><orcidid>https://orcid.org/0000-0002-8490-030X</orcidid><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-5436-2467</orcidid><orcidid>https://orcid.org/0000-0003-2352-7457</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-08, Vol.26 (33), p.2249-2261 |
issn | 1463-9076 1463-9084 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090637543 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemical Sciences Chemistry Electron paramagnetic resonance Freezing NMR Nuclear magnetic resonance or physical chemistry Polarization Polarizers Theoretical and |
title | Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20optimization%20of%20dynamic%20nuclear%20polarization%20on%20a%201%20tesla%20benchtop%20polarizer%20with%20hyperpolarizing%20solids&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Vaneeckhaute,%20Ewoud&rft.date=2024-08-22&rft.volume=26&rft.issue=33&rft.spage=2249&rft.epage=2261&rft.pages=2249-2261&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp02022g&rft_dat=%3Cproquest_pubme%3E3095379621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095379621&rft_id=info:pmid/39114945&rfr_iscdi=true |