Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF
Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases....
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (42), p.e2402173-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2402173 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Merchiori, Sebastiano Donne, Andrea Le Bhatia, Ribhu Alvelli, Marta Yu, Jiang‐Jing Wu, Xu‐Dong Li, Mian Li, Dan Scheller, Lukasz Lowe, Alexander R. Geppert‐Rybczynska, Monika Trump, Benjamin A. Yakovenko, Andrey A. Chorążewski, Mirosław Zajdel, Paweł Grosu, Yaroslav Meloni, Simone |
description | Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.
In this study it is observed a peculiar and counterintuitive non‐monotonic trend of the intrusion pressure (Pi) of water into the hydrophobic Cu2(tebpz) MOF as a function of temperature. Although the internal contact angle decreases with temperature, Pi increases, which is contrary to classical predictions i.e. the Young–Laplace law. In this work, the causes of this phenonmelogy are highlighted. |
doi_str_mv | 10.1002/smll.202402173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090634927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090634927</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2503-1ca3f2005b1a061076fd268452fa760ca289515c14088cf2f96f417f73be6473</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4soOKdXzwEv89D5vkmbtkcpzgkdE-w9tF3iMvplkjrmX-_KZAdP7wcPP348nnePMEcA-mSbup5ToAFQjNiFN0GOzOcxTS7PO8K1d2PtDoAhDaKJJ9JuaJ00unWDdvpbktzIdkM6Rd5aZwaru5a8G2ntYCTZa7cluWx6aQo3PnRL3FaS5WFjun7blboi6UBnTpb9zyNZrRe33pUqaivv_ubUyxcvebr0s_XrW_qc-Z80BOZjVTBFAcISC-AIEVcbyuMgpKqIOFQFjZMQwwoDiONKUZVwFWCkIlZKHkRs6s1Osb3pvgZpnWi0rWRdF63sBisYJMBZkNARffiH7rrBtMdygiFGccxZjEcqOVF7XcuD6I1uCnMQCGJ0LUbX4uxafKyy7HyxXwOJdBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117886381</pqid></control><display><type>article</type><title>Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Merchiori, Sebastiano ; Donne, Andrea Le ; Bhatia, Ribhu ; Alvelli, Marta ; Yu, Jiang‐Jing ; Wu, Xu‐Dong ; Li, Mian ; Li, Dan ; Scheller, Lukasz ; Lowe, Alexander R. ; Geppert‐Rybczynska, Monika ; Trump, Benjamin A. ; Yakovenko, Andrey A. ; Chorążewski, Mirosław ; Zajdel, Paweł ; Grosu, Yaroslav ; Meloni, Simone</creator><creatorcontrib>Merchiori, Sebastiano ; Donne, Andrea Le ; Bhatia, Ribhu ; Alvelli, Marta ; Yu, Jiang‐Jing ; Wu, Xu‐Dong ; Li, Mian ; Li, Dan ; Scheller, Lukasz ; Lowe, Alexander R. ; Geppert‐Rybczynska, Monika ; Trump, Benjamin A. ; Yakovenko, Andrey A. ; Chorążewski, Mirosław ; Zajdel, Paweł ; Grosu, Yaroslav ; Meloni, Simone</creatorcontrib><description>Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.
In this study it is observed a peculiar and counterintuitive non‐monotonic trend of the intrusion pressure (Pi) of water into the hydrophobic Cu2(tebpz) MOF as a function of temperature. Although the internal contact angle decreases with temperature, Pi increases, which is contrary to classical predictions i.e. the Young–Laplace law. In this work, the causes of this phenonmelogy are highlighted.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402173</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Contact angle ; Contact pressure ; Hydrophobicity ; Intrusion ; intrusion pressure ; metal–organic frameworks ; microporous materials ; Molecular dynamics ; Partial pressure ; Pressure effects ; Surface tension ; Temperature ; Vapor density ; Vapor pressure</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402173-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1884-7640 ; 0000-0001-8685-5939 ; 0000-0002-8912-9024 ; 0000-0002-3069-3018 ; 0000-0001-6523-1780 ; 0009-0001-6870-0762 ; 0000-0002-7112-9624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402173$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402173$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Merchiori, Sebastiano</creatorcontrib><creatorcontrib>Donne, Andrea Le</creatorcontrib><creatorcontrib>Bhatia, Ribhu</creatorcontrib><creatorcontrib>Alvelli, Marta</creatorcontrib><creatorcontrib>Yu, Jiang‐Jing</creatorcontrib><creatorcontrib>Wu, Xu‐Dong</creatorcontrib><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Scheller, Lukasz</creatorcontrib><creatorcontrib>Lowe, Alexander R.</creatorcontrib><creatorcontrib>Geppert‐Rybczynska, Monika</creatorcontrib><creatorcontrib>Trump, Benjamin A.</creatorcontrib><creatorcontrib>Yakovenko, Andrey A.</creatorcontrib><creatorcontrib>Chorążewski, Mirosław</creatorcontrib><creatorcontrib>Zajdel, Paweł</creatorcontrib><creatorcontrib>Grosu, Yaroslav</creatorcontrib><creatorcontrib>Meloni, Simone</creatorcontrib><title>Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.
In this study it is observed a peculiar and counterintuitive non‐monotonic trend of the intrusion pressure (Pi) of water into the hydrophobic Cu2(tebpz) MOF as a function of temperature. Although the internal contact angle decreases with temperature, Pi increases, which is contrary to classical predictions i.e. the Young–Laplace law. In this work, the causes of this phenonmelogy are highlighted.</description><subject>Contact angle</subject><subject>Contact pressure</subject><subject>Hydrophobicity</subject><subject>Intrusion</subject><subject>intrusion pressure</subject><subject>metal–organic frameworks</subject><subject>microporous materials</subject><subject>Molecular dynamics</subject><subject>Partial pressure</subject><subject>Pressure effects</subject><subject>Surface tension</subject><subject>Temperature</subject><subject>Vapor density</subject><subject>Vapor pressure</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkM1LwzAYh4soOKdXzwEv89D5vkmbtkcpzgkdE-w9tF3iMvplkjrmX-_KZAdP7wcPP348nnePMEcA-mSbup5ToAFQjNiFN0GOzOcxTS7PO8K1d2PtDoAhDaKJJ9JuaJ00unWDdvpbktzIdkM6Rd5aZwaru5a8G2ntYCTZa7cluWx6aQo3PnRL3FaS5WFjun7blboi6UBnTpb9zyNZrRe33pUqaivv_ubUyxcvebr0s_XrW_qc-Z80BOZjVTBFAcISC-AIEVcbyuMgpKqIOFQFjZMQwwoDiONKUZVwFWCkIlZKHkRs6s1Osb3pvgZpnWi0rWRdF63sBisYJMBZkNARffiH7rrBtMdygiFGccxZjEcqOVF7XcuD6I1uCnMQCGJ0LUbX4uxafKyy7HyxXwOJdBw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Merchiori, Sebastiano</creator><creator>Donne, Andrea Le</creator><creator>Bhatia, Ribhu</creator><creator>Alvelli, Marta</creator><creator>Yu, Jiang‐Jing</creator><creator>Wu, Xu‐Dong</creator><creator>Li, Mian</creator><creator>Li, Dan</creator><creator>Scheller, Lukasz</creator><creator>Lowe, Alexander R.</creator><creator>Geppert‐Rybczynska, Monika</creator><creator>Trump, Benjamin A.</creator><creator>Yakovenko, Andrey A.</creator><creator>Chorążewski, Mirosław</creator><creator>Zajdel, Paweł</creator><creator>Grosu, Yaroslav</creator><creator>Meloni, Simone</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1884-7640</orcidid><orcidid>https://orcid.org/0000-0001-8685-5939</orcidid><orcidid>https://orcid.org/0000-0002-8912-9024</orcidid><orcidid>https://orcid.org/0000-0002-3069-3018</orcidid><orcidid>https://orcid.org/0000-0001-6523-1780</orcidid><orcidid>https://orcid.org/0009-0001-6870-0762</orcidid><orcidid>https://orcid.org/0000-0002-7112-9624</orcidid></search><sort><creationdate>20241001</creationdate><title>Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF</title><author>Merchiori, Sebastiano ; Donne, Andrea Le ; Bhatia, Ribhu ; Alvelli, Marta ; Yu, Jiang‐Jing ; Wu, Xu‐Dong ; Li, Mian ; Li, Dan ; Scheller, Lukasz ; Lowe, Alexander R. ; Geppert‐Rybczynska, Monika ; Trump, Benjamin A. ; Yakovenko, Andrey A. ; Chorążewski, Mirosław ; Zajdel, Paweł ; Grosu, Yaroslav ; Meloni, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2503-1ca3f2005b1a061076fd268452fa760ca289515c14088cf2f96f417f73be6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contact angle</topic><topic>Contact pressure</topic><topic>Hydrophobicity</topic><topic>Intrusion</topic><topic>intrusion pressure</topic><topic>metal–organic frameworks</topic><topic>microporous materials</topic><topic>Molecular dynamics</topic><topic>Partial pressure</topic><topic>Pressure effects</topic><topic>Surface tension</topic><topic>Temperature</topic><topic>Vapor density</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merchiori, Sebastiano</creatorcontrib><creatorcontrib>Donne, Andrea Le</creatorcontrib><creatorcontrib>Bhatia, Ribhu</creatorcontrib><creatorcontrib>Alvelli, Marta</creatorcontrib><creatorcontrib>Yu, Jiang‐Jing</creatorcontrib><creatorcontrib>Wu, Xu‐Dong</creatorcontrib><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Scheller, Lukasz</creatorcontrib><creatorcontrib>Lowe, Alexander R.</creatorcontrib><creatorcontrib>Geppert‐Rybczynska, Monika</creatorcontrib><creatorcontrib>Trump, Benjamin A.</creatorcontrib><creatorcontrib>Yakovenko, Andrey A.</creatorcontrib><creatorcontrib>Chorążewski, Mirosław</creatorcontrib><creatorcontrib>Zajdel, Paweł</creatorcontrib><creatorcontrib>Grosu, Yaroslav</creatorcontrib><creatorcontrib>Meloni, Simone</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merchiori, Sebastiano</au><au>Donne, Andrea Le</au><au>Bhatia, Ribhu</au><au>Alvelli, Marta</au><au>Yu, Jiang‐Jing</au><au>Wu, Xu‐Dong</au><au>Li, Mian</au><au>Li, Dan</au><au>Scheller, Lukasz</au><au>Lowe, Alexander R.</au><au>Geppert‐Rybczynska, Monika</au><au>Trump, Benjamin A.</au><au>Yakovenko, Andrey A.</au><au>Chorążewski, Mirosław</au><au>Zajdel, Paweł</au><au>Grosu, Yaroslav</au><au>Meloni, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>20</volume><issue>42</issue><spage>e2402173</spage><epage>n/a</epage><pages>e2402173-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.
In this study it is observed a peculiar and counterintuitive non‐monotonic trend of the intrusion pressure (Pi) of water into the hydrophobic Cu2(tebpz) MOF as a function of temperature. Although the internal contact angle decreases with temperature, Pi increases, which is contrary to classical predictions i.e. the Young–Laplace law. In this work, the causes of this phenonmelogy are highlighted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202402173</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1884-7640</orcidid><orcidid>https://orcid.org/0000-0001-8685-5939</orcidid><orcidid>https://orcid.org/0000-0002-8912-9024</orcidid><orcidid>https://orcid.org/0000-0002-3069-3018</orcidid><orcidid>https://orcid.org/0000-0001-6523-1780</orcidid><orcidid>https://orcid.org/0009-0001-6870-0762</orcidid><orcidid>https://orcid.org/0000-0002-7112-9624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402173-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090634927 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Contact angle Contact pressure Hydrophobicity Intrusion intrusion pressure metal–organic frameworks microporous materials Molecular dynamics Partial pressure Pressure effects Surface tension Temperature Vapor density Vapor pressure |
title | Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counterintuitive%20Trend%20of%20Intrusion%20Pressure%20with%20Temperature%20in%20the%20Hydrophobic%20Cu2(tebpz)%20MOF&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Merchiori,%20Sebastiano&rft.date=2024-10-01&rft.volume=20&rft.issue=42&rft.spage=e2402173&rft.epage=n/a&rft.pages=e2402173-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402173&rft_dat=%3Cproquest_wiley%3E3090634927%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117886381&rft_id=info:pmid/&rfr_iscdi=true |