Reactive Extrusion Printing of Zeolitic Imidazolate Framework Films

An outstanding challenge for the field of metal–organic frameworks (MOFs) is structuring to form forms with greater useability. Reactive extrusion printing (REP) is a technique for the direct formation of films from their molecular components on-demand and on-location. Here we apply REP for the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (33), p.44270-44277
Hauptverfasser: Al-Ghazzawi, Fatimah, Conte, Luke, Potts, Michael W., Richardson, Christopher, Wagner, Pawel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An outstanding challenge for the field of metal–organic frameworks (MOFs) is structuring to form forms with greater useability. Reactive extrusion printing (REP) is a technique for the direct formation of films from their molecular components on-demand and on-location. Here we apply REP for the first time to zeolitic imidazolate frameworks (ZIFs) and study the interplay of solvent and molarity ratio on the phase distribution between ZIF-8 and ZIF-L in reactive printed films. Our results show that REP controllably directs phase formation between ZIF-L and ZIF-8 and that REP also gives control over crystal size and that high-quality ZIF-8 films, in particular, are produced in low-dispersity interconnected nanoparticulate form. Importantly, we show that REP is responsive to established surface-functionalization techniques to control important printing parameters of line width and thickness. This work expands the repertoire of REP to the important class of ZIFs.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c08609