Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport

Hematite (α‐Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC‐WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (46), p.e2404438-n/a
Hauptverfasser: Xing, Xiu‐Shuang, Zeng, Xuyang, Wu, Shaolong, Song, Peilin, Song, Xin, Guo, Yao, Li, Zehao, Li, He, Zhou, Zhongyuan, Du, Jimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page e2404438
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Xing, Xiu‐Shuang
Zeng, Xuyang
Wu, Shaolong
Song, Peilin
Song, Xin
Guo, Yao
Li, Zehao
Li, He
Zhou, Zhongyuan
Du, Jimin
description Hematite (α‐Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC‐WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α‐Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal–organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2‐substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α‐Fe2O3 photoanode loaded with FeNi‐NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm−2) at 1.23 VRHE, which is 2.33 times that of the pure α‐Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α‐Fe2O3 photoanodes. The ─NH2 group as an electron‐donor group can effectively regulate the electron distribution and band structure of α‐Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC‐WS performance of α‐Fe2O3 photoanode. The introduction of bimetallic MOFs with different organic functional groups can regulate the electronic and band structure of α‐Fe2O3 photoanodes to improve the photoelectrochemical conversion performance. The ─NH2 group as an electron‐donor group significantly prolongs the decay lifetime of photogenerated holes, which enhances the photoelectrochemical water oxidation of the α‐Fe2O3 photoanode along with the bimetallic synergistic effect.
doi_str_mv 10.1002/smll.202404438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3088563826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130267844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-ec8d47e795ac5b313826d0c8985bdca95b520bd18692bb9df91aa0841bdda8d03</originalsourceid><addsrcrecordid>eNqFkctuEzEUQC1ERdvAliWyxIZNUj9mJp5liZoWKVUrUdaWx75JHTzjcO1R1B3_0EX_jy9h0pQgsWFlyzo-90qHkPecTThj4iy1IUwEEwUrCqlekRNecTmulKhfH-6cHZPTlNaMSS6K6RtyLGvOeCXZCXmaxS5l7G323YpeQzbh18_HG1yZzls6R9PCNuJ3OvehTXTr8z09d-s-ZdMEoBcBbMa4Q28xbgCzh0RjR6-gNdlnoLf3MUfTRQd0GZF-jjE9T3p-X0EHaDI4OjOIHpDeoenSJmJ-S46WJiR493KOyLf5xd3sary4ufwyO1-MrSiVGoNVrpjCtC6NLRvJpRKVY1bVqmycNXXZlII1jquqFk1Tu2XNjWGq4I1zRjkmR-TT3rvB-KOHlHXrk4UQTAexT1oypcpqpx3Qj_-g69hjN2ynh8FMVFM1NBiRyZ6yGFNCWOoN-tbgg-ZM75LpXTJ9SDZ8-PCi7ZsW3AH_02gA6j2w9QEe_qPTX68Xi7_y3zqop3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130267844</pqid></control><display><type>article</type><title>Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport</title><source>Access via Wiley Online Library</source><creator>Xing, Xiu‐Shuang ; Zeng, Xuyang ; Wu, Shaolong ; Song, Peilin ; Song, Xin ; Guo, Yao ; Li, Zehao ; Li, He ; Zhou, Zhongyuan ; Du, Jimin</creator><creatorcontrib>Xing, Xiu‐Shuang ; Zeng, Xuyang ; Wu, Shaolong ; Song, Peilin ; Song, Xin ; Guo, Yao ; Li, Zehao ; Li, He ; Zhou, Zhongyuan ; Du, Jimin</creatorcontrib><description>Hematite (α‐Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC‐WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α‐Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal–organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2‐substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α‐Fe2O3 photoanode loaded with FeNi‐NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm−2) at 1.23 VRHE, which is 2.33 times that of the pure α‐Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α‐Fe2O3 photoanodes. The ─NH2 group as an electron‐donor group can effectively regulate the electron distribution and band structure of α‐Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC‐WS performance of α‐Fe2O3 photoanode. The introduction of bimetallic MOFs with different organic functional groups can regulate the electronic and band structure of α‐Fe2O3 photoanodes to improve the photoelectrochemical conversion performance. The ─NH2 group as an electron‐donor group significantly prolongs the decay lifetime of photogenerated holes, which enhances the photoelectrochemical water oxidation of the α‐Fe2O3 photoanode along with the bimetallic synergistic effect.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404438</identifier><identifier>PMID: 39101630</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bimetals ; Carrier recombination ; Carrier transport ; Electrical properties ; Electrical resistivity ; Electron distribution ; Electronic properties ; Electronic structure ; electronic structure regulation ; Ferric oxide ; Functional groups ; Hematite ; Iron ; Metal-organic frameworks ; metal–organic frameworks (MOFs) ; Nickel ; Nitrogen dioxide ; Photoanodes ; Photoelectric effect ; photoelectrochemical water splitting ; Synergistic effect ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (46), p.e2404438-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-ec8d47e795ac5b313826d0c8985bdca95b520bd18692bb9df91aa0841bdda8d03</cites><orcidid>0009-0002-9557-341X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39101630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Xiu‐Shuang</creatorcontrib><creatorcontrib>Zeng, Xuyang</creatorcontrib><creatorcontrib>Wu, Shaolong</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Guo, Yao</creatorcontrib><creatorcontrib>Li, Zehao</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Zhou, Zhongyuan</creatorcontrib><creatorcontrib>Du, Jimin</creatorcontrib><title>Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hematite (α‐Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC‐WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α‐Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal–organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2‐substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α‐Fe2O3 photoanode loaded with FeNi‐NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm−2) at 1.23 VRHE, which is 2.33 times that of the pure α‐Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α‐Fe2O3 photoanodes. The ─NH2 group as an electron‐donor group can effectively regulate the electron distribution and band structure of α‐Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC‐WS performance of α‐Fe2O3 photoanode. The introduction of bimetallic MOFs with different organic functional groups can regulate the electronic and band structure of α‐Fe2O3 photoanodes to improve the photoelectrochemical conversion performance. The ─NH2 group as an electron‐donor group significantly prolongs the decay lifetime of photogenerated holes, which enhances the photoelectrochemical water oxidation of the α‐Fe2O3 photoanode along with the bimetallic synergistic effect.</description><subject>Bimetals</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron distribution</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>electronic structure regulation</subject><subject>Ferric oxide</subject><subject>Functional groups</subject><subject>Hematite</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>metal–organic frameworks (MOFs)</subject><subject>Nickel</subject><subject>Nitrogen dioxide</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>photoelectrochemical water splitting</subject><subject>Synergistic effect</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUQC1ERdvAliWyxIZNUj9mJp5liZoWKVUrUdaWx75JHTzjcO1R1B3_0EX_jy9h0pQgsWFlyzo-90qHkPecTThj4iy1IUwEEwUrCqlekRNecTmulKhfH-6cHZPTlNaMSS6K6RtyLGvOeCXZCXmaxS5l7G323YpeQzbh18_HG1yZzls6R9PCNuJ3OvehTXTr8z09d-s-ZdMEoBcBbMa4Q28xbgCzh0RjR6-gNdlnoLf3MUfTRQd0GZF-jjE9T3p-X0EHaDI4OjOIHpDeoenSJmJ-S46WJiR493KOyLf5xd3sary4ufwyO1-MrSiVGoNVrpjCtC6NLRvJpRKVY1bVqmycNXXZlII1jquqFk1Tu2XNjWGq4I1zRjkmR-TT3rvB-KOHlHXrk4UQTAexT1oypcpqpx3Qj_-g69hjN2ynh8FMVFM1NBiRyZ6yGFNCWOoN-tbgg-ZM75LpXTJ9SDZ8-PCi7ZsW3AH_02gA6j2w9QEe_qPTX68Xi7_y3zqop3U</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Xing, Xiu‐Shuang</creator><creator>Zeng, Xuyang</creator><creator>Wu, Shaolong</creator><creator>Song, Peilin</creator><creator>Song, Xin</creator><creator>Guo, Yao</creator><creator>Li, Zehao</creator><creator>Li, He</creator><creator>Zhou, Zhongyuan</creator><creator>Du, Jimin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-9557-341X</orcidid></search><sort><creationdate>20241101</creationdate><title>Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport</title><author>Xing, Xiu‐Shuang ; Zeng, Xuyang ; Wu, Shaolong ; Song, Peilin ; Song, Xin ; Guo, Yao ; Li, Zehao ; Li, He ; Zhou, Zhongyuan ; Du, Jimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-ec8d47e795ac5b313826d0c8985bdca95b520bd18692bb9df91aa0841bdda8d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bimetals</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron distribution</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>electronic structure regulation</topic><topic>Ferric oxide</topic><topic>Functional groups</topic><topic>Hematite</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>metal–organic frameworks (MOFs)</topic><topic>Nickel</topic><topic>Nitrogen dioxide</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>photoelectrochemical water splitting</topic><topic>Synergistic effect</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Xiu‐Shuang</creatorcontrib><creatorcontrib>Zeng, Xuyang</creatorcontrib><creatorcontrib>Wu, Shaolong</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Guo, Yao</creatorcontrib><creatorcontrib>Li, Zehao</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Zhou, Zhongyuan</creatorcontrib><creatorcontrib>Du, Jimin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Xiu‐Shuang</au><au>Zeng, Xuyang</au><au>Wu, Shaolong</au><au>Song, Peilin</au><au>Song, Xin</au><au>Guo, Yao</au><au>Li, Zehao</au><au>Li, He</au><au>Zhou, Zhongyuan</au><au>Du, Jimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>46</issue><spage>e2404438</spage><epage>n/a</epage><pages>e2404438-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Hematite (α‐Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC‐WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α‐Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal–organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2‐substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α‐Fe2O3 photoanode loaded with FeNi‐NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm−2) at 1.23 VRHE, which is 2.33 times that of the pure α‐Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α‐Fe2O3 photoanodes. The ─NH2 group as an electron‐donor group can effectively regulate the electron distribution and band structure of α‐Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC‐WS performance of α‐Fe2O3 photoanode. The introduction of bimetallic MOFs with different organic functional groups can regulate the electronic and band structure of α‐Fe2O3 photoanodes to improve the photoelectrochemical conversion performance. The ─NH2 group as an electron‐donor group significantly prolongs the decay lifetime of photogenerated holes, which enhances the photoelectrochemical water oxidation of the α‐Fe2O3 photoanode along with the bimetallic synergistic effect.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39101630</pmid><doi>10.1002/smll.202404438</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0002-9557-341X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (46), p.e2404438-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3088563826
source Access via Wiley Online Library
subjects Bimetals
Carrier recombination
Carrier transport
Electrical properties
Electrical resistivity
Electron distribution
Electronic properties
Electronic structure
electronic structure regulation
Ferric oxide
Functional groups
Hematite
Iron
Metal-organic frameworks
metal–organic frameworks (MOFs)
Nickel
Nitrogen dioxide
Photoanodes
Photoelectric effect
photoelectrochemical water splitting
Synergistic effect
Water splitting
title Constructing Metal–Organic Framework Films with Adjustable Electronic Properties on Hematite Photoanode for Boosting Photogenerated Carrier Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Metal%E2%80%93Organic%20Framework%20Films%20with%20Adjustable%20Electronic%20Properties%20on%20Hematite%20Photoanode%20for%20Boosting%20Photogenerated%20Carrier%20Transport&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xing,%20Xiu%E2%80%90Shuang&rft.date=2024-11-01&rft.volume=20&rft.issue=46&rft.spage=e2404438&rft.epage=n/a&rft.pages=e2404438-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404438&rft_dat=%3Cproquest_cross%3E3130267844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130267844&rft_id=info:pmid/39101630&rfr_iscdi=true