Efficient solar-driven crude oil cleanup via graphene/cellulose aerogel with radial and centrosymmetric design

Frequent oil spills pose significant threats to ecosystems; therefore, strict requirements are needed for prompt remediation and reclamation of spilled oil. Influenced by the structure of coniferous trees and their water transport, this experiment used cellulose nanofiber (CNF), polyvinyl alcohol (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-09, Vol.477, p.135418, Article 135418
Hauptverfasser: Lu, Jiarui, Feng, Qian, Wang, Jinze, Li, Jiatian, Tan, Sicong, Xu, Zhaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frequent oil spills pose significant threats to ecosystems; therefore, strict requirements are needed for prompt remediation and reclamation of spilled oil. Influenced by the structure of coniferous trees and their water transport, this experiment used cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and methyltrimethoxysilane (MTMS) to prepare radially centrosymmetric aerogels. By utilizing the in-situ polycondensation reaction of MTMS, CNF, and PVA were connected, and the hydrophobicity and mechanical properties of the aerogel were greatly enhanced. Furthermore, the introduction of graphene oxide (GO), enshrouded within the cross-linked network, engenders heightened photo-thermal effects. The resultant composite aerogel exhibits expeditious oil absorption under solar irradiation and radial layered channel architecture, significantly curtailing the crude oil absorption timeframe (achieving a maximum absorption capacity of 51.7 g/g). Moreover, it demonstrates superior performance in rapidly and repeatedly adsorbing highly viscous crude oil, surpassing existing literature. Notably, continuous absorption of high-viscosity crude oil is achieved by integrating the composite aerogel with a peristaltic pump. This study offers a novel approach to the absorption and retrieval of high-viscosity crude oil, broadening the potential application horizons of CNF-based aerogels within environmental remediation. [Display omitted] •Radiating central symmetry similar to conifers.•Excellent recovery ability after heavy compression.•Excellent ability to quickly absorb crude oil.•Cooperate with peristaltic pump to realize fast and continuous crude oil recovery.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2024.135418