FPWT: Filter pruning via wavelet transform for CNNs

The enormous data and computational resources required by Convolutional Neural Networks (CNNs) hinder the practical application on mobile devices. To solve this restrictive problem, filter pruning has become one of the practical approaches. At present, most existing pruning methods are currently dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-11, Vol.179, p.106577, Article 106577
Hauptverfasser: Liu, Yajun, Fan, Kefeng, Zhou, Wenju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The enormous data and computational resources required by Convolutional Neural Networks (CNNs) hinder the practical application on mobile devices. To solve this restrictive problem, filter pruning has become one of the practical approaches. At present, most existing pruning methods are currently developed and practiced with respect to the spatial domain, which ignores the potential interconnections in the model structure and the decentralized distribution of image energy in the spatial domain. The image frequency domain transform method can remove the correlation between image pixels and concentrate the image energy distribution, which results in lossy compression of images. In this study, we find that the frequency domain transform method is also applicable to the feature maps of CNNs. The filter pruning via wavelet transform (WT) is proposed in this paper (FPWT), which combines the frequency domain information of WT with the output feature map to more obviously find the correlation between feature maps and make the energy into a relatively concentrated distribution in the frequency domain. Moreover, the importance score of each feature map is calculated by the cosine similarity and the energy-weighted coefficients of the high and low frequency components, and prune the filter based on its importance score. Experiments on two image classification datasets validate the effectiveness of FPWT. For ResNet-110 on CIFAR-10, FPWT reduces FLOPs and parameters by more than 60.0 % with 0.53 % accuracy improvement. For ResNet-50 on ImageNet, FPWT reduces FLOPs by 53.8 % and removes parameters by 49.7 % with only 0.97 % loss of Top-1 accuracy.
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2024.106577