Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation
Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiat...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-10, Vol.277 (Pt 3), p.134248, Article 134248 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiative cooling integrated thermoelectric devices still suffer from low-temperature gradient and output voltage. Here, based on the Mie scattering and internal reflection enhancing principle, an impact-inducing geometry reconstruction approach was proposed to fabricate hierarchical nanostructured cellulosic coatings with good daytime cooling performance to achieve stable electricity generation function, which can be realized by using a scalable and facile wet ball milling technology. Guided by the theoretical simulations of the finite difference time domain method (FDTD), the cellulose and TiO2 nanoparticles can assemble into spherical envelope structured coatings drying by the shear, impact, and friction interaction in the ball milling process, dramatically enhancing the Mie scattering and internal reflection of coatings. The cellulosic coatings exhibit sunlight reflectivity of 0.962 and infrared emissivity of 0.94, resulting in a daytime radiative cooling efficiency of 5.9 °C under direct sunlight. Energy Plus stimulation demonstrated 35 % cooling energy and 468.9 kWh of cooling energy can be saved annually in China. Meanwhile, this cellulosic coating-based thermoelectric device can deliver a high voltage output of 150 mV under 1 Sun due to the strong bonding and high-temperature gradient formation (30 °C), which is higher than previous reports. This study will facilitate the development of sustainable power generation device for the goal of green future. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.134248 |