Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations
Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constr...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-08, Vol.26 (32), p.21727-21738 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21738 |
---|---|
container_issue | 32 |
container_start_page | 21727 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Xing, Zhibo Liu, Yingguang Wu, Ning Wang, Shuo Zhang, Xutao |
description | Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CC3NNTs through the bonding of CNTs and C3NNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects. Placing the heat source in the CNT region induces a stronger heat flux compared to the C3NNT region, thus demonstrating a pronounced TR effect. This effect can be attributed to the mismatch in phonon spectra, as evidenced by the cumulative correlation factor derived from the phonon density of states (phonon DOS). Using this approach, we predict that the TR ratio for zigzag CC3NNTs (ZCC3NNT) significantly exceeds that of armchair CC3NNTs (ACC3NNT). Notably, in contrast to ACC3NNT, ZCC3NNT exhibits the phenomenon of negative differential thermal resistance in the backward heat flux with a temperature difference of Δ = 120 K. This phenomenon can be attributed to a lower phonon participation ratio at Δ = 120 K compared to other values of Δ. Subsequently, given that ZCC3NNT demonstrates the most pronounced TR ratio at room temperature, we explored how stress–strain, system size, defect density, and interface position impact the TR ratio. These insights are invaluable for guiding the design of thermal rectifiers, smart thermal management systems, and microelectronic processor coolers. |
doi_str_mv | 10.1039/d4cp01890g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3088553570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088553570</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-a525143ff960bfbe40e73039fbb11e372ce9a670e5d6c7f8d5d11f50bc9f822f3</originalsourceid><addsrcrecordid>eNpdj81KxDAUhYMoOI5ufIKAGzd1kqZp06UM_sGgLnQ9JOnNNEObzCSN4Av43MYfXLg6l3M_DucgdE7JFSWsXXSV3hEqWrI5QDNa1axoiagO_-6mPkYnMW4JIZRTNkMfzwE6qyfrHfYG93bT46mHMMoBB8i-sVp-fxX08s36gK3DWgbl3WLJHnEPEwTvpPNTUhCxkhE6nHnnHeyTHawKNo149APoNMiAu3cnR6sjjnbMxld4PEVHRg4Rzn51jl5vb16W98Xq6e5heb0qdnnAVEhecloxY9qaKKOgItCwvNsoRSmwptTQyrohwLtaN0Z0vKPUcKJ0a0RZGjZHlz-5u-D3CeK0Hm3UMAzSgU9xzYgQnDPekIxe_EO3PgWX22WqLQVlNaPsE4WXdBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092813631</pqid></control><display><type>article</type><title>Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xing, Zhibo ; Liu, Yingguang ; Wu, Ning ; Wang, Shuo ; Zhang, Xutao</creator><creatorcontrib>Xing, Zhibo ; Liu, Yingguang ; Wu, Ning ; Wang, Shuo ; Zhang, Xutao</creatorcontrib><description>Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CC3NNTs through the bonding of CNTs and C3NNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects. Placing the heat source in the CNT region induces a stronger heat flux compared to the C3NNT region, thus demonstrating a pronounced TR effect. This effect can be attributed to the mismatch in phonon spectra, as evidenced by the cumulative correlation factor derived from the phonon density of states (phonon DOS). Using this approach, we predict that the TR ratio for zigzag CC3NNTs (ZCC3NNT) significantly exceeds that of armchair CC3NNTs (ACC3NNT). Notably, in contrast to ACC3NNT, ZCC3NNT exhibits the phenomenon of negative differential thermal resistance in the backward heat flux with a temperature difference of Δ = 120 K. This phenomenon can be attributed to a lower phonon participation ratio at Δ = 120 K compared to other values of Δ. Subsequently, given that ZCC3NNT demonstrates the most pronounced TR ratio at room temperature, we explored how stress–strain, system size, defect density, and interface position impact the TR ratio. These insights are invaluable for guiding the design of thermal rectifiers, smart thermal management systems, and microelectronic processor coolers.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01890g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Carbon ; Chemical bonds ; Coolers ; Correlation coefficients ; Density of states ; Heat ; Heat flux ; Heat transfer ; Heterostructures ; Management systems ; Microprocessors ; Molecular dynamics ; Phonons ; Room temperature ; Temperature gradients ; Thermal management ; Thermal resistance</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-08, Vol.26 (32), p.21727-21738</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xing, Zhibo</creatorcontrib><creatorcontrib>Liu, Yingguang</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><title>Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations</title><title>Physical chemistry chemical physics : PCCP</title><description>Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CC3NNTs through the bonding of CNTs and C3NNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects. Placing the heat source in the CNT region induces a stronger heat flux compared to the C3NNT region, thus demonstrating a pronounced TR effect. This effect can be attributed to the mismatch in phonon spectra, as evidenced by the cumulative correlation factor derived from the phonon density of states (phonon DOS). Using this approach, we predict that the TR ratio for zigzag CC3NNTs (ZCC3NNT) significantly exceeds that of armchair CC3NNTs (ACC3NNT). Notably, in contrast to ACC3NNT, ZCC3NNT exhibits the phenomenon of negative differential thermal resistance in the backward heat flux with a temperature difference of Δ = 120 K. This phenomenon can be attributed to a lower phonon participation ratio at Δ = 120 K compared to other values of Δ. Subsequently, given that ZCC3NNT demonstrates the most pronounced TR ratio at room temperature, we explored how stress–strain, system size, defect density, and interface position impact the TR ratio. These insights are invaluable for guiding the design of thermal rectifiers, smart thermal management systems, and microelectronic processor coolers.</description><subject>Bonding strength</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Coolers</subject><subject>Correlation coefficients</subject><subject>Density of states</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heterostructures</subject><subject>Management systems</subject><subject>Microprocessors</subject><subject>Molecular dynamics</subject><subject>Phonons</subject><subject>Room temperature</subject><subject>Temperature gradients</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj81KxDAUhYMoOI5ufIKAGzd1kqZp06UM_sGgLnQ9JOnNNEObzCSN4Av43MYfXLg6l3M_DucgdE7JFSWsXXSV3hEqWrI5QDNa1axoiagO_-6mPkYnMW4JIZRTNkMfzwE6qyfrHfYG93bT46mHMMoBB8i-sVp-fxX08s36gK3DWgbl3WLJHnEPEwTvpPNTUhCxkhE6nHnnHeyTHawKNo149APoNMiAu3cnR6sjjnbMxld4PEVHRg4Rzn51jl5vb16W98Xq6e5heb0qdnnAVEhecloxY9qaKKOgItCwvNsoRSmwptTQyrohwLtaN0Z0vKPUcKJ0a0RZGjZHlz-5u-D3CeK0Hm3UMAzSgU9xzYgQnDPekIxe_EO3PgWX22WqLQVlNaPsE4WXdBs</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Xing, Zhibo</creator><creator>Liu, Yingguang</creator><creator>Wu, Ning</creator><creator>Wang, Shuo</creator><creator>Zhang, Xutao</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240814</creationdate><title>Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations</title><author>Xing, Zhibo ; Liu, Yingguang ; Wu, Ning ; Wang, Shuo ; Zhang, Xutao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-a525143ff960bfbe40e73039fbb11e372ce9a670e5d6c7f8d5d11f50bc9f822f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Coolers</topic><topic>Correlation coefficients</topic><topic>Density of states</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heterostructures</topic><topic>Management systems</topic><topic>Microprocessors</topic><topic>Molecular dynamics</topic><topic>Phonons</topic><topic>Room temperature</topic><topic>Temperature gradients</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zhibo</creatorcontrib><creatorcontrib>Liu, Yingguang</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zhibo</au><au>Liu, Yingguang</au><au>Wu, Ning</au><au>Wang, Shuo</au><au>Zhang, Xutao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-08-14</date><risdate>2024</risdate><volume>26</volume><issue>32</issue><spage>21727</spage><epage>21738</epage><pages>21727-21738</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CC3NNTs through the bonding of CNTs and C3NNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects. Placing the heat source in the CNT region induces a stronger heat flux compared to the C3NNT region, thus demonstrating a pronounced TR effect. This effect can be attributed to the mismatch in phonon spectra, as evidenced by the cumulative correlation factor derived from the phonon density of states (phonon DOS). Using this approach, we predict that the TR ratio for zigzag CC3NNTs (ZCC3NNT) significantly exceeds that of armchair CC3NNTs (ACC3NNT). Notably, in contrast to ACC3NNT, ZCC3NNT exhibits the phenomenon of negative differential thermal resistance in the backward heat flux with a temperature difference of Δ = 120 K. This phenomenon can be attributed to a lower phonon participation ratio at Δ = 120 K compared to other values of Δ. Subsequently, given that ZCC3NNT demonstrates the most pronounced TR ratio at room temperature, we explored how stress–strain, system size, defect density, and interface position impact the TR ratio. These insights are invaluable for guiding the design of thermal rectifiers, smart thermal management systems, and microelectronic processor coolers.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp01890g</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-08, Vol.26 (32), p.21727-21738 |
issn | 1463-9076 1463-9084 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_3088553570 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bonding strength Carbon Chemical bonds Coolers Correlation coefficients Density of states Heat Heat flux Heat transfer Heterostructures Management systems Microprocessors Molecular dynamics Phonons Room temperature Temperature gradients Thermal management Thermal resistance |
title | Prediction of high thermal rectification behavior in carbon/C3N heteronanotubes based on nonequilibrium molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20high%20thermal%20rectification%20behavior%20in%20carbon/C3N%20heteronanotubes%20based%20on%20nonequilibrium%20molecular%20dynamics%20simulations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Xing,%20Zhibo&rft.date=2024-08-14&rft.volume=26&rft.issue=32&rft.spage=21727&rft.epage=21738&rft.pages=21727-21738&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01890g&rft_dat=%3Cproquest%3E3088553570%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092813631&rft_id=info:pmid/&rfr_iscdi=true |