Additive manufacturing of highly entangled polymer networks
Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2024-08, Vol.385 (6708), p.566-572 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 6708 |
container_start_page | 566 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 385 |
creator | Dhand, Abhishek P Davidson, Matthew D Zlotnick, Hannah M Kolibaba, Thomas J Killgore, Jason P Burdick, Jason A |
description | Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy that combines light and dark polymerization to allow constituent polymer chains to densely entangle as they form within printed structures. This generalizable approach reaches high monomer conversion at room temperature without the need for additional stimuli, such as light or heat after printing, and enables additive manufacturing of highly entangled hydrogels and elastomers that exhibit fourfold- to sevenfold-higher extension energies in comparison to that of traditional DLP. We used this method to print high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues. |
doi_str_mv | 10.1126/science.adn6925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3087352066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086903415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-6e00c4530b4826b9a8430c24d02c1298511913ac5501da611e077b41494a39b83</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUws6FILCxpr5-xxVRVvKRKLDBHjuO0KYlT7ASUf0-qBgamM9zvHh19CF1jmGNMxCKY0jpj5zp3QhF-gqYYFI8VAXqKpgBUxBISPkEXIewAhpui52hCFUgpiJyi-2Wel235ZaNau67Qpu186TZRU0TbcrOt-si6VrtNZfNo31R9bX3kbPvd-I9wic4KXQV7NeYMvT8-vK2e4_Xr08tquY4NAdXGwgIYxilkTBKRKS0ZBUNYDsRgoiTHWGGqDeeAcy0wtpAkGcNMMU1VJukM3R1797757Gxo07oMxlaVdrbpQkpBJpQTEGJAb_-hu6bzblh3oIQCyjAfqMWRMr4Jwdsi3fuy1r5PMaQHr-noNR29Dh83Y2-X1Tb_439F0h9C-3PC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086903415</pqid></control><display><type>article</type><title>Additive manufacturing of highly entangled polymer networks</title><source>Science Magazine</source><creator>Dhand, Abhishek P ; Davidson, Matthew D ; Zlotnick, Hannah M ; Kolibaba, Thomas J ; Killgore, Jason P ; Burdick, Jason A</creator><creatorcontrib>Dhand, Abhishek P ; Davidson, Matthew D ; Zlotnick, Hannah M ; Kolibaba, Thomas J ; Killgore, Jason P ; Burdick, Jason A</creatorcontrib><description>Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy that combines light and dark polymerization to allow constituent polymer chains to densely entangle as they form within printed structures. This generalizable approach reaches high monomer conversion at room temperature without the need for additional stimuli, such as light or heat after printing, and enables additive manufacturing of highly entangled hydrogels and elastomers that exhibit fourfold- to sevenfold-higher extension energies in comparison to that of traditional DLP. We used this method to print high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adn6925</identifier><identifier>PMID: 39088628</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Low level ; Monomers ; Polymerization ; Polymers ; Printing</subject><ispartof>Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6708), p.566-572</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-6e00c4530b4826b9a8430c24d02c1298511913ac5501da611e077b41494a39b83</cites><orcidid>0000-0002-2006-332X ; 0000-0002-8458-6680 ; 0000-0002-1470-1081 ; 0000-0002-9177-4006 ; 0000-0002-0942-3072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2888,2889,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39088628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhand, Abhishek P</creatorcontrib><creatorcontrib>Davidson, Matthew D</creatorcontrib><creatorcontrib>Zlotnick, Hannah M</creatorcontrib><creatorcontrib>Kolibaba, Thomas J</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><creatorcontrib>Burdick, Jason A</creatorcontrib><title>Additive manufacturing of highly entangled polymer networks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy that combines light and dark polymerization to allow constituent polymer chains to densely entangle as they form within printed structures. This generalizable approach reaches high monomer conversion at room temperature without the need for additional stimuli, such as light or heat after printing, and enables additive manufacturing of highly entangled hydrogels and elastomers that exhibit fourfold- to sevenfold-higher extension energies in comparison to that of traditional DLP. We used this method to print high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues.</description><subject>Low level</subject><subject>Monomers</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Printing</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EoqUws6FILCxpr5-xxVRVvKRKLDBHjuO0KYlT7ASUf0-qBgamM9zvHh19CF1jmGNMxCKY0jpj5zp3QhF-gqYYFI8VAXqKpgBUxBISPkEXIewAhpui52hCFUgpiJyi-2Wel235ZaNau67Qpu186TZRU0TbcrOt-si6VrtNZfNo31R9bX3kbPvd-I9wic4KXQV7NeYMvT8-vK2e4_Xr08tquY4NAdXGwgIYxilkTBKRKS0ZBUNYDsRgoiTHWGGqDeeAcy0wtpAkGcNMMU1VJukM3R1797757Gxo07oMxlaVdrbpQkpBJpQTEGJAb_-hu6bzblh3oIQCyjAfqMWRMr4Jwdsi3fuy1r5PMaQHr-noNR29Dh83Y2-X1Tb_439F0h9C-3PC</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Dhand, Abhishek P</creator><creator>Davidson, Matthew D</creator><creator>Zlotnick, Hannah M</creator><creator>Kolibaba, Thomas J</creator><creator>Killgore, Jason P</creator><creator>Burdick, Jason A</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2006-332X</orcidid><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-1470-1081</orcidid><orcidid>https://orcid.org/0000-0002-9177-4006</orcidid><orcidid>https://orcid.org/0000-0002-0942-3072</orcidid></search><sort><creationdate>20240802</creationdate><title>Additive manufacturing of highly entangled polymer networks</title><author>Dhand, Abhishek P ; Davidson, Matthew D ; Zlotnick, Hannah M ; Kolibaba, Thomas J ; Killgore, Jason P ; Burdick, Jason A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-6e00c4530b4826b9a8430c24d02c1298511913ac5501da611e077b41494a39b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Low level</topic><topic>Monomers</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhand, Abhishek P</creatorcontrib><creatorcontrib>Davidson, Matthew D</creatorcontrib><creatorcontrib>Zlotnick, Hannah M</creatorcontrib><creatorcontrib>Kolibaba, Thomas J</creatorcontrib><creatorcontrib>Killgore, Jason P</creatorcontrib><creatorcontrib>Burdick, Jason A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhand, Abhishek P</au><au>Davidson, Matthew D</au><au>Zlotnick, Hannah M</au><au>Kolibaba, Thomas J</au><au>Killgore, Jason P</au><au>Burdick, Jason A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of highly entangled polymer networks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-08-02</date><risdate>2024</risdate><volume>385</volume><issue>6708</issue><spage>566</spage><epage>572</epage><pages>566-572</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Incorporation of polymer chain entanglements within a single network can synergistically improve stiffness and toughness, yet attaining such dense entanglements through vat photopolymerization additive manufacturing [e.g., digital light processing (DLP)] remains elusive. We report a facile strategy that combines light and dark polymerization to allow constituent polymer chains to densely entangle as they form within printed structures. This generalizable approach reaches high monomer conversion at room temperature without the need for additional stimuli, such as light or heat after printing, and enables additive manufacturing of highly entangled hydrogels and elastomers that exhibit fourfold- to sevenfold-higher extension energies in comparison to that of traditional DLP. We used this method to print high-resolution and multimaterial structures with features such as spatially programmed adhesion to wet tissues.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39088628</pmid><doi>10.1126/science.adn6925</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2006-332X</orcidid><orcidid>https://orcid.org/0000-0002-8458-6680</orcidid><orcidid>https://orcid.org/0000-0002-1470-1081</orcidid><orcidid>https://orcid.org/0000-0002-9177-4006</orcidid><orcidid>https://orcid.org/0000-0002-0942-3072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6708), p.566-572 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_3087352066 |
source | Science Magazine |
subjects | Low level Monomers Polymerization Polymers Printing |
title | Additive manufacturing of highly entangled polymer networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T22%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20highly%20entangled%20polymer%20networks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dhand,%20Abhishek%20P&rft.date=2024-08-02&rft.volume=385&rft.issue=6708&rft.spage=566&rft.epage=572&rft.pages=566-572&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adn6925&rft_dat=%3Cproquest_cross%3E3086903415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086903415&rft_id=info:pmid/39088628&rfr_iscdi=true |