Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction

The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-09, Vol.63 (36), p.e202409449-n/a
Hauptverfasser: Zhou, Jian, Xu, Liangliang, Gai, Huiyu, Xu, Ning, Ren, Zhichu, Hou, Xianbiao, Chen, Zongkun, Han, Zhongkang, Sarker, Debalaya, Levchenko, Sergey V., Huang, Minghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e202409449
container_title Angewandte Chemie International Edition
container_volume 63
creator Zhou, Jian
Xu, Liangliang
Gai, Huiyu
Xu, Ning
Ren, Zhichu
Hou, Xianbiao
Chen, Zongkun
Han, Zhongkang
Sarker, Debalaya
Levchenko, Sergey V.
Huang, Minghua
description The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism. We present a workflow that combines artificial‐intelligence data‐mining subgroup discovery method with density‐functional theory calculations to find descriptors of catalytic activity of Ni‐based MOFs in oxygen evolution reaction (OER). The identified data‐driven descriptors do not only guide the rational design of efficient MOF‐based catalysts, but also provide physical insights overarching existing knowledge on physical factors governing OER catalysis by MOFs.
doi_str_mv 10.1002/anie.202409449
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3087351134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087351134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-14e0c326d4d44d541560cd4835c19719917e90768e2caeebd094caa1541dda6b3</originalsourceid><addsrcrecordid>eNqFkcFuEzEURS0EoqWwZYkssWEzwR7bM_YyalKIVIgEZT1y7JfUZTIebE9Cdv0EJNb8XL8Ej1KKxIaV3-Lc46d3EXpJyYQSUr7VnYNJSUpOFOfqETqloqQFq2v2OM-csaKWgp6gZzHeZF5KUj1FJ0zKigvKTtGvRZcg9AGSXrWAZzrpu9sfs-B20OEZRBNcn3yIeO0DnseRcvHadRucrgF_TmEwaQiQM1OT3M6lA_4ErU7OdxnrsV_jD9nd3t3-XIZN3tbgi6C3sPfha8RXfq-Dxcvvh03-br7z7TAms0KbcXiOnqx1G-HF_XuGvlzMr87fF5fLd4vz6WVhSiFVQTkQw8rKcsu5FZyKihjLJROGqpoqRWtQpK4klEYDrGw-ltGaZtJaXa3YGXpz9PbBfxsgpmbrooG21R34ITaMyJoJShnP6Ot_0Bs_hC5vlylV1TLfVmRqcqRM8DEGWDd9cFsdDg0lzVhcMxbXPBSXA6_utcNqC_YB_9NUBtQR2LsWDv_RNdOPi_lf-W8isKrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096783885</pqid></control><display><type>article</type><title>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</title><source>Wiley Online Library All Journals</source><creator>Zhou, Jian ; Xu, Liangliang ; Gai, Huiyu ; Xu, Ning ; Ren, Zhichu ; Hou, Xianbiao ; Chen, Zongkun ; Han, Zhongkang ; Sarker, Debalaya ; Levchenko, Sergey V. ; Huang, Minghua</creator><creatorcontrib>Zhou, Jian ; Xu, Liangliang ; Gai, Huiyu ; Xu, Ning ; Ren, Zhichu ; Hou, Xianbiao ; Chen, Zongkun ; Han, Zhongkang ; Sarker, Debalaya ; Levchenko, Sergey V. ; Huang, Minghua</creatorcontrib><description>The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism. We present a workflow that combines artificial‐intelligence data‐mining subgroup discovery method with density‐functional theory calculations to find descriptors of catalytic activity of Ni‐based MOFs in oxygen evolution reaction (OER). The identified data‐driven descriptors do not only guide the rational design of efficient MOF‐based catalysts, but also provide physical insights overarching existing knowledge on physical factors governing OER catalysis by MOFs.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202409449</identifier><identifier>PMID: 38864513</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bimetals ; Catalysts ; data-driven descriptors ; Datasets ; electronic structure ; Electrons ; Ionization ; Metal-organic frameworks ; Molecular orbitals ; Molecular structure ; oxygen evolution reaction ; Oxygen evolution reactions ; Subgroups ; Transition metals</subject><ispartof>Angewandte Chemie International Edition, 2024-09, Vol.63 (36), p.e202409449-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-14e0c326d4d44d541560cd4835c19719917e90768e2caeebd094caa1541dda6b3</cites><orcidid>0000-0002-9622-3131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202409449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202409449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38864513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Gai, Huiyu</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Ren, Zhichu</creatorcontrib><creatorcontrib>Hou, Xianbiao</creatorcontrib><creatorcontrib>Chen, Zongkun</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Huang, Minghua</creatorcontrib><title>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism. We present a workflow that combines artificial‐intelligence data‐mining subgroup discovery method with density‐functional theory calculations to find descriptors of catalytic activity of Ni‐based MOFs in oxygen evolution reaction (OER). The identified data‐driven descriptors do not only guide the rational design of efficient MOF‐based catalysts, but also provide physical insights overarching existing knowledge on physical factors governing OER catalysis by MOFs.</description><subject>Bimetals</subject><subject>Catalysts</subject><subject>data-driven descriptors</subject><subject>Datasets</subject><subject>electronic structure</subject><subject>Electrons</subject><subject>Ionization</subject><subject>Metal-organic frameworks</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Subgroups</subject><subject>Transition metals</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEURS0EoqWwZYkssWEzwR7bM_YyalKIVIgEZT1y7JfUZTIebE9Cdv0EJNb8XL8Ej1KKxIaV3-Lc46d3EXpJyYQSUr7VnYNJSUpOFOfqETqloqQFq2v2OM-csaKWgp6gZzHeZF5KUj1FJ0zKigvKTtGvRZcg9AGSXrWAZzrpu9sfs-B20OEZRBNcn3yIeO0DnseRcvHadRucrgF_TmEwaQiQM1OT3M6lA_4ErU7OdxnrsV_jD9nd3t3-XIZN3tbgi6C3sPfha8RXfq-Dxcvvh03-br7z7TAms0KbcXiOnqx1G-HF_XuGvlzMr87fF5fLd4vz6WVhSiFVQTkQw8rKcsu5FZyKihjLJROGqpoqRWtQpK4klEYDrGw-ltGaZtJaXa3YGXpz9PbBfxsgpmbrooG21R34ITaMyJoJShnP6Ot_0Bs_hC5vlylV1TLfVmRqcqRM8DEGWDd9cFsdDg0lzVhcMxbXPBSXA6_utcNqC_YB_9NUBtQR2LsWDv_RNdOPi_lf-W8isKrM</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Zhou, Jian</creator><creator>Xu, Liangliang</creator><creator>Gai, Huiyu</creator><creator>Xu, Ning</creator><creator>Ren, Zhichu</creator><creator>Hou, Xianbiao</creator><creator>Chen, Zongkun</creator><creator>Han, Zhongkang</creator><creator>Sarker, Debalaya</creator><creator>Levchenko, Sergey V.</creator><creator>Huang, Minghua</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9622-3131</orcidid></search><sort><creationdate>20240902</creationdate><title>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</title><author>Zhou, Jian ; Xu, Liangliang ; Gai, Huiyu ; Xu, Ning ; Ren, Zhichu ; Hou, Xianbiao ; Chen, Zongkun ; Han, Zhongkang ; Sarker, Debalaya ; Levchenko, Sergey V. ; Huang, Minghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-14e0c326d4d44d541560cd4835c19719917e90768e2caeebd094caa1541dda6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bimetals</topic><topic>Catalysts</topic><topic>data-driven descriptors</topic><topic>Datasets</topic><topic>electronic structure</topic><topic>Electrons</topic><topic>Ionization</topic><topic>Metal-organic frameworks</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Subgroups</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Gai, Huiyu</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Ren, Zhichu</creatorcontrib><creatorcontrib>Hou, Xianbiao</creatorcontrib><creatorcontrib>Chen, Zongkun</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Huang, Minghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jian</au><au>Xu, Liangliang</au><au>Gai, Huiyu</au><au>Xu, Ning</au><au>Ren, Zhichu</au><au>Hou, Xianbiao</au><au>Chen, Zongkun</au><au>Han, Zhongkang</au><au>Sarker, Debalaya</au><au>Levchenko, Sergey V.</au><au>Huang, Minghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-09-02</date><risdate>2024</risdate><volume>63</volume><issue>36</issue><spage>e202409449</spage><epage>n/a</epage><pages>e202409449-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism. We present a workflow that combines artificial‐intelligence data‐mining subgroup discovery method with density‐functional theory calculations to find descriptors of catalytic activity of Ni‐based MOFs in oxygen evolution reaction (OER). The identified data‐driven descriptors do not only guide the rational design of efficient MOF‐based catalysts, but also provide physical insights overarching existing knowledge on physical factors governing OER catalysis by MOFs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38864513</pmid><doi>10.1002/anie.202409449</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9622-3131</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-09, Vol.63 (36), p.e202409449-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3087351134
source Wiley Online Library All Journals
subjects Bimetals
Catalysts
data-driven descriptors
Datasets
electronic structure
Electrons
Ionization
Metal-organic frameworks
Molecular orbitals
Molecular structure
oxygen evolution reaction
Oxygen evolution reactions
Subgroups
Transition metals
title Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Data%E2%80%90Driven%20Descriptors%20for%20Establishing%20the%20Structure%E2%80%90Activity%20Relationship%20of%20Metal%E2%80%93Organic%20Frameworks%20Toward%20Oxygen%20Evolution%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhou,%20Jian&rft.date=2024-09-02&rft.volume=63&rft.issue=36&rft.spage=e202409449&rft.epage=n/a&rft.pages=e202409449-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202409449&rft_dat=%3Cproquest_cross%3E3087351134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096783885&rft_id=info:pmid/38864513&rfr_iscdi=true