Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps

IMPORTANCE: Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JAMA : the journal of the American Medical Association 2024-08, Vol.332 (8), p.649-657
Hauptverfasser: Stringer, Jeffrey S. A, Pokaprakarn, Teeranan, Prieto, Juan C, Vwalika, Bellington, Chari, Srihari V, Sindano, Ntazana, Freeman, Bethany L, Sikapande, Bridget, Davis, Nicole M, Sebastião, Yuri V, Mandona, Nelly M, Stringer, Elizabeth M, Benabdelkader, Chiraz, Mungole, Mutinta, Kapilya, Filson M, Almnini, Nariman, Diaz, Arieska N, Fecteau, Brittany A, Kosorok, Michael R, Cole, Stephen R, Kasaro, Margaret P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 8
container_start_page 649
container_title JAMA : the journal of the American Medical Association
container_volume 332
creator Stringer, Jeffrey S. A
Pokaprakarn, Teeranan
Prieto, Juan C
Vwalika, Bellington
Chari, Srihari V
Sindano, Ntazana
Freeman, Bethany L
Sikapande, Bridget
Davis, Nicole M
Sebastião, Yuri V
Mandona, Nelly M
Stringer, Elizabeth M
Benabdelkader, Chiraz
Mungole, Mutinta
Kapilya, Filson M
Almnini, Nariman
Diaz, Arieska N
Fecteau, Brittany A
Kosorok, Michael R
Cole, Stephen R
Kasaro, Margaret P
description IMPORTANCE: Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweeps and incorporated it into the software of a low-cost, battery-powered device. OBJECTIVE: To evaluate GA estimation accuracy of an AI-enabled ultrasonography tool when used by novice users with no prior training in sonography. DESIGN, SETTING, AND PARTICIPANTS: This prospective diagnostic accuracy study enrolled 400 individuals with viable, single, nonanomalous, first-trimester pregnancies in Lusaka, Zambia, and Chapel Hill, North Carolina. Credentialed sonographers established the “ground truth” GA via transvaginal crown-rump length measurement. At random follow-up visits throughout gestation, including a primary evaluation window from 14 0/7 weeks’ to 27 6/7 weeks’ gestation, novice users obtained blind sweeps of the maternal abdomen using the AI-enabled device (index test) and credentialed sonographers performed fetal biometry with a high-specification machine (study standard). MAIN OUTCOMES AND MEASURES: The primary outcome was the mean absolute error (MAE) of the index test and study standard, which was calculated by comparing each method’s estimate to the previously established GA and considered equivalent if the difference fell within a prespecified margin of ±2 days. RESULTS: In the primary evaluation window, the AI-enabled device met criteria for equivalence to the study standard, with an MAE (SE) of 3.2 (0.1) days vs 3.0 (0.1) days (difference, 0.2 days [95% CI, −0.1 to 0.5]). Additionally, the percentage of assessments within 7 days of the ground truth GA was comparable (90.7% for the index test vs 92.5% for the study standard). Performance was consistent in prespecified subgroups, including the Zambia and North Carolina cohorts and those with high body mass index. CONCLUSIONS AND RELEVANCE: Between 14 and 27 weeks’ gestation, novice users with no prior training in ultrasonography estimated GA as accurately with the low-cost, point-of-care AI tool as credentialed sonographers performing standard biometry on high-specification machines. These findings have immediate implications for obstetrical care in low-resource settings, advancing the World Health Organization goal of ultrasonography estimation of GA for all pregnant people. TRIAL REGISTRATION: Cli
doi_str_mv 10.1001/jama.2024.10770
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086957949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ama_id>2821666</ama_id><sourcerecordid>3086957949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-e724c7dd3d8adb02f171f26bda00e1c4e325280a14746111a6e3ab658dfe56123</originalsourceid><addsrcrecordid>eNpVkc1v3CAQxVHUKtmkOUfqoeLYi5Phw4BP1eazK0XqockZsTDeOrLNFuxW-e_LdpOo5QLD_Obx0CPkjME5A2AXT25w5xy4LKXWcEAWrBamEnVj3pEFQGMqLY08Isc5P0FZTOhDciQaMIYDLAhed24zxjx1ni69n5PzzzS21I10NU64SW7CQJcr-hBjT6dIbwo6lEt6h3lyUxdH19PlBultigO97Lsx0Md-Si7HuRy__0bc5g_kfev6jKcv-wl5vL15uPpa3X-7W10t7yvHazVVqLn0OgQRjAtr4C3TrOVqHRwAMi9R8JobcExqqRhjTqFwa1Wb0GKtGBcn5MtedzuvBwwex2Kkt9tULKdnG11n_--M3Q-7ib8sY6IGqU1R-PyikOLPuXzRDl322PduxDhnK8CoptaNbAp6sUd9ijknbN_eYWB36dhdOnaXjv2bTpn49K-9N_41jgJ83AO7wdcuN5wppcQfal6Uow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086957949</pqid></control><display><type>article</type><title>Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps</title><source>MEDLINE</source><source>American Medical Association Journals</source><creator>Stringer, Jeffrey S. A ; Pokaprakarn, Teeranan ; Prieto, Juan C ; Vwalika, Bellington ; Chari, Srihari V ; Sindano, Ntazana ; Freeman, Bethany L ; Sikapande, Bridget ; Davis, Nicole M ; Sebastião, Yuri V ; Mandona, Nelly M ; Stringer, Elizabeth M ; Benabdelkader, Chiraz ; Mungole, Mutinta ; Kapilya, Filson M ; Almnini, Nariman ; Diaz, Arieska N ; Fecteau, Brittany A ; Kosorok, Michael R ; Cole, Stephen R ; Kasaro, Margaret P</creator><creatorcontrib>Stringer, Jeffrey S. A ; Pokaprakarn, Teeranan ; Prieto, Juan C ; Vwalika, Bellington ; Chari, Srihari V ; Sindano, Ntazana ; Freeman, Bethany L ; Sikapande, Bridget ; Davis, Nicole M ; Sebastião, Yuri V ; Mandona, Nelly M ; Stringer, Elizabeth M ; Benabdelkader, Chiraz ; Mungole, Mutinta ; Kapilya, Filson M ; Almnini, Nariman ; Diaz, Arieska N ; Fecteau, Brittany A ; Kosorok, Michael R ; Cole, Stephen R ; Kasaro, Margaret P</creatorcontrib><description>IMPORTANCE: Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweeps and incorporated it into the software of a low-cost, battery-powered device. OBJECTIVE: To evaluate GA estimation accuracy of an AI-enabled ultrasonography tool when used by novice users with no prior training in sonography. DESIGN, SETTING, AND PARTICIPANTS: This prospective diagnostic accuracy study enrolled 400 individuals with viable, single, nonanomalous, first-trimester pregnancies in Lusaka, Zambia, and Chapel Hill, North Carolina. Credentialed sonographers established the “ground truth” GA via transvaginal crown-rump length measurement. At random follow-up visits throughout gestation, including a primary evaluation window from 14 0/7 weeks’ to 27 6/7 weeks’ gestation, novice users obtained blind sweeps of the maternal abdomen using the AI-enabled device (index test) and credentialed sonographers performed fetal biometry with a high-specification machine (study standard). MAIN OUTCOMES AND MEASURES: The primary outcome was the mean absolute error (MAE) of the index test and study standard, which was calculated by comparing each method’s estimate to the previously established GA and considered equivalent if the difference fell within a prespecified margin of ±2 days. RESULTS: In the primary evaluation window, the AI-enabled device met criteria for equivalence to the study standard, with an MAE (SE) of 3.2 (0.1) days vs 3.0 (0.1) days (difference, 0.2 days [95% CI, −0.1 to 0.5]). Additionally, the percentage of assessments within 7 days of the ground truth GA was comparable (90.7% for the index test vs 92.5% for the study standard). Performance was consistent in prespecified subgroups, including the Zambia and North Carolina cohorts and those with high body mass index. CONCLUSIONS AND RELEVANCE: Between 14 and 27 weeks’ gestation, novice users with no prior training in ultrasonography estimated GA as accurately with the low-cost, point-of-care AI tool as credentialed sonographers performing standard biometry on high-specification machines. These findings have immediate implications for obstetrical care in low-resource settings, advancing the World Health Organization goal of ultrasonography estimation of GA for all pregnant people. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05433519</description><identifier>ISSN: 0098-7484</identifier><identifier>ISSN: 1538-3598</identifier><identifier>EISSN: 1538-3598</identifier><identifier>DOI: 10.1001/jama.2024.10770</identifier><identifier>PMID: 39088200</identifier><language>eng</language><publisher>United States: American Medical Association</publisher><subject>Adult ; AI in Medicine ; Artificial Intelligence ; Biometry - methods ; Crown-Rump Length ; Female ; Gestational Age ; Humans ; Online First ; Original Investigation ; Point-of-Care Systems - economics ; Pregnancy ; Pregnancy Trimester, First ; Prospective Studies ; Software ; Ultrasonography, Prenatal - economics ; Ultrasonography, Prenatal - instrumentation ; Ultrasonography, Prenatal - methods ; Zambia</subject><ispartof>JAMA : the journal of the American Medical Association, 2024-08, Vol.332 (8), p.649-657</ispartof><rights>Copyright 2024 American Medical Association. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a256t-e724c7dd3d8adb02f171f26bda00e1c4e325280a14746111a6e3ab658dfe56123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jamanetwork.com/journals/jama/articlepdf/10.1001/jama.2024.10770$$EPDF$$P50$$Gama$$H</linktopdf><linktohtml>$$Uhttps://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2024.10770$$EHTML$$P50$$Gama$$H</linktohtml><link.rule.ids>64,230,314,776,780,881,3327,27901,27902,76231,76234</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39088200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stringer, Jeffrey S. A</creatorcontrib><creatorcontrib>Pokaprakarn, Teeranan</creatorcontrib><creatorcontrib>Prieto, Juan C</creatorcontrib><creatorcontrib>Vwalika, Bellington</creatorcontrib><creatorcontrib>Chari, Srihari V</creatorcontrib><creatorcontrib>Sindano, Ntazana</creatorcontrib><creatorcontrib>Freeman, Bethany L</creatorcontrib><creatorcontrib>Sikapande, Bridget</creatorcontrib><creatorcontrib>Davis, Nicole M</creatorcontrib><creatorcontrib>Sebastião, Yuri V</creatorcontrib><creatorcontrib>Mandona, Nelly M</creatorcontrib><creatorcontrib>Stringer, Elizabeth M</creatorcontrib><creatorcontrib>Benabdelkader, Chiraz</creatorcontrib><creatorcontrib>Mungole, Mutinta</creatorcontrib><creatorcontrib>Kapilya, Filson M</creatorcontrib><creatorcontrib>Almnini, Nariman</creatorcontrib><creatorcontrib>Diaz, Arieska N</creatorcontrib><creatorcontrib>Fecteau, Brittany A</creatorcontrib><creatorcontrib>Kosorok, Michael R</creatorcontrib><creatorcontrib>Cole, Stephen R</creatorcontrib><creatorcontrib>Kasaro, Margaret P</creatorcontrib><title>Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps</title><title>JAMA : the journal of the American Medical Association</title><addtitle>JAMA</addtitle><description>IMPORTANCE: Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweeps and incorporated it into the software of a low-cost, battery-powered device. OBJECTIVE: To evaluate GA estimation accuracy of an AI-enabled ultrasonography tool when used by novice users with no prior training in sonography. DESIGN, SETTING, AND PARTICIPANTS: This prospective diagnostic accuracy study enrolled 400 individuals with viable, single, nonanomalous, first-trimester pregnancies in Lusaka, Zambia, and Chapel Hill, North Carolina. Credentialed sonographers established the “ground truth” GA via transvaginal crown-rump length measurement. At random follow-up visits throughout gestation, including a primary evaluation window from 14 0/7 weeks’ to 27 6/7 weeks’ gestation, novice users obtained blind sweeps of the maternal abdomen using the AI-enabled device (index test) and credentialed sonographers performed fetal biometry with a high-specification machine (study standard). MAIN OUTCOMES AND MEASURES: The primary outcome was the mean absolute error (MAE) of the index test and study standard, which was calculated by comparing each method’s estimate to the previously established GA and considered equivalent if the difference fell within a prespecified margin of ±2 days. RESULTS: In the primary evaluation window, the AI-enabled device met criteria for equivalence to the study standard, with an MAE (SE) of 3.2 (0.1) days vs 3.0 (0.1) days (difference, 0.2 days [95% CI, −0.1 to 0.5]). Additionally, the percentage of assessments within 7 days of the ground truth GA was comparable (90.7% for the index test vs 92.5% for the study standard). Performance was consistent in prespecified subgroups, including the Zambia and North Carolina cohorts and those with high body mass index. CONCLUSIONS AND RELEVANCE: Between 14 and 27 weeks’ gestation, novice users with no prior training in ultrasonography estimated GA as accurately with the low-cost, point-of-care AI tool as credentialed sonographers performing standard biometry on high-specification machines. These findings have immediate implications for obstetrical care in low-resource settings, advancing the World Health Organization goal of ultrasonography estimation of GA for all pregnant people. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05433519</description><subject>Adult</subject><subject>AI in Medicine</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Crown-Rump Length</subject><subject>Female</subject><subject>Gestational Age</subject><subject>Humans</subject><subject>Online First</subject><subject>Original Investigation</subject><subject>Point-of-Care Systems - economics</subject><subject>Pregnancy</subject><subject>Pregnancy Trimester, First</subject><subject>Prospective Studies</subject><subject>Software</subject><subject>Ultrasonography, Prenatal - economics</subject><subject>Ultrasonography, Prenatal - instrumentation</subject><subject>Ultrasonography, Prenatal - methods</subject><subject>Zambia</subject><issn>0098-7484</issn><issn>1538-3598</issn><issn>1538-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v3CAQxVHUKtmkOUfqoeLYi5Phw4BP1eazK0XqockZsTDeOrLNFuxW-e_LdpOo5QLD_Obx0CPkjME5A2AXT25w5xy4LKXWcEAWrBamEnVj3pEFQGMqLY08Isc5P0FZTOhDciQaMIYDLAhed24zxjx1ni69n5PzzzS21I10NU64SW7CQJcr-hBjT6dIbwo6lEt6h3lyUxdH19PlBultigO97Lsx0Md-Si7HuRy__0bc5g_kfev6jKcv-wl5vL15uPpa3X-7W10t7yvHazVVqLn0OgQRjAtr4C3TrOVqHRwAMi9R8JobcExqqRhjTqFwa1Wb0GKtGBcn5MtedzuvBwwex2Kkt9tULKdnG11n_--M3Q-7ib8sY6IGqU1R-PyikOLPuXzRDl322PduxDhnK8CoptaNbAp6sUd9ijknbN_eYWB36dhdOnaXjv2bTpn49K-9N_41jgJ83AO7wdcuN5wppcQfal6Uow</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Stringer, Jeffrey S. A</creator><creator>Pokaprakarn, Teeranan</creator><creator>Prieto, Juan C</creator><creator>Vwalika, Bellington</creator><creator>Chari, Srihari V</creator><creator>Sindano, Ntazana</creator><creator>Freeman, Bethany L</creator><creator>Sikapande, Bridget</creator><creator>Davis, Nicole M</creator><creator>Sebastião, Yuri V</creator><creator>Mandona, Nelly M</creator><creator>Stringer, Elizabeth M</creator><creator>Benabdelkader, Chiraz</creator><creator>Mungole, Mutinta</creator><creator>Kapilya, Filson M</creator><creator>Almnini, Nariman</creator><creator>Diaz, Arieska N</creator><creator>Fecteau, Brittany A</creator><creator>Kosorok, Michael R</creator><creator>Cole, Stephen R</creator><creator>Kasaro, Margaret P</creator><general>American Medical Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240827</creationdate><title>Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps</title><author>Stringer, Jeffrey S. A ; Pokaprakarn, Teeranan ; Prieto, Juan C ; Vwalika, Bellington ; Chari, Srihari V ; Sindano, Ntazana ; Freeman, Bethany L ; Sikapande, Bridget ; Davis, Nicole M ; Sebastião, Yuri V ; Mandona, Nelly M ; Stringer, Elizabeth M ; Benabdelkader, Chiraz ; Mungole, Mutinta ; Kapilya, Filson M ; Almnini, Nariman ; Diaz, Arieska N ; Fecteau, Brittany A ; Kosorok, Michael R ; Cole, Stephen R ; Kasaro, Margaret P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-e724c7dd3d8adb02f171f26bda00e1c4e325280a14746111a6e3ab658dfe56123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>AI in Medicine</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Crown-Rump Length</topic><topic>Female</topic><topic>Gestational Age</topic><topic>Humans</topic><topic>Online First</topic><topic>Original Investigation</topic><topic>Point-of-Care Systems - economics</topic><topic>Pregnancy</topic><topic>Pregnancy Trimester, First</topic><topic>Prospective Studies</topic><topic>Software</topic><topic>Ultrasonography, Prenatal - economics</topic><topic>Ultrasonography, Prenatal - instrumentation</topic><topic>Ultrasonography, Prenatal - methods</topic><topic>Zambia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stringer, Jeffrey S. A</creatorcontrib><creatorcontrib>Pokaprakarn, Teeranan</creatorcontrib><creatorcontrib>Prieto, Juan C</creatorcontrib><creatorcontrib>Vwalika, Bellington</creatorcontrib><creatorcontrib>Chari, Srihari V</creatorcontrib><creatorcontrib>Sindano, Ntazana</creatorcontrib><creatorcontrib>Freeman, Bethany L</creatorcontrib><creatorcontrib>Sikapande, Bridget</creatorcontrib><creatorcontrib>Davis, Nicole M</creatorcontrib><creatorcontrib>Sebastião, Yuri V</creatorcontrib><creatorcontrib>Mandona, Nelly M</creatorcontrib><creatorcontrib>Stringer, Elizabeth M</creatorcontrib><creatorcontrib>Benabdelkader, Chiraz</creatorcontrib><creatorcontrib>Mungole, Mutinta</creatorcontrib><creatorcontrib>Kapilya, Filson M</creatorcontrib><creatorcontrib>Almnini, Nariman</creatorcontrib><creatorcontrib>Diaz, Arieska N</creatorcontrib><creatorcontrib>Fecteau, Brittany A</creatorcontrib><creatorcontrib>Kosorok, Michael R</creatorcontrib><creatorcontrib>Cole, Stephen R</creatorcontrib><creatorcontrib>Kasaro, Margaret P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMA : the journal of the American Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stringer, Jeffrey S. A</au><au>Pokaprakarn, Teeranan</au><au>Prieto, Juan C</au><au>Vwalika, Bellington</au><au>Chari, Srihari V</au><au>Sindano, Ntazana</au><au>Freeman, Bethany L</au><au>Sikapande, Bridget</au><au>Davis, Nicole M</au><au>Sebastião, Yuri V</au><au>Mandona, Nelly M</au><au>Stringer, Elizabeth M</au><au>Benabdelkader, Chiraz</au><au>Mungole, Mutinta</au><au>Kapilya, Filson M</au><au>Almnini, Nariman</au><au>Diaz, Arieska N</au><au>Fecteau, Brittany A</au><au>Kosorok, Michael R</au><au>Cole, Stephen R</au><au>Kasaro, Margaret P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps</atitle><jtitle>JAMA : the journal of the American Medical Association</jtitle><addtitle>JAMA</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>332</volume><issue>8</issue><spage>649</spage><epage>657</epage><pages>649-657</pages><issn>0098-7484</issn><issn>1538-3598</issn><eissn>1538-3598</eissn><abstract>IMPORTANCE: Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweeps and incorporated it into the software of a low-cost, battery-powered device. OBJECTIVE: To evaluate GA estimation accuracy of an AI-enabled ultrasonography tool when used by novice users with no prior training in sonography. DESIGN, SETTING, AND PARTICIPANTS: This prospective diagnostic accuracy study enrolled 400 individuals with viable, single, nonanomalous, first-trimester pregnancies in Lusaka, Zambia, and Chapel Hill, North Carolina. Credentialed sonographers established the “ground truth” GA via transvaginal crown-rump length measurement. At random follow-up visits throughout gestation, including a primary evaluation window from 14 0/7 weeks’ to 27 6/7 weeks’ gestation, novice users obtained blind sweeps of the maternal abdomen using the AI-enabled device (index test) and credentialed sonographers performed fetal biometry with a high-specification machine (study standard). MAIN OUTCOMES AND MEASURES: The primary outcome was the mean absolute error (MAE) of the index test and study standard, which was calculated by comparing each method’s estimate to the previously established GA and considered equivalent if the difference fell within a prespecified margin of ±2 days. RESULTS: In the primary evaluation window, the AI-enabled device met criteria for equivalence to the study standard, with an MAE (SE) of 3.2 (0.1) days vs 3.0 (0.1) days (difference, 0.2 days [95% CI, −0.1 to 0.5]). Additionally, the percentage of assessments within 7 days of the ground truth GA was comparable (90.7% for the index test vs 92.5% for the study standard). Performance was consistent in prespecified subgroups, including the Zambia and North Carolina cohorts and those with high body mass index. CONCLUSIONS AND RELEVANCE: Between 14 and 27 weeks’ gestation, novice users with no prior training in ultrasonography estimated GA as accurately with the low-cost, point-of-care AI tool as credentialed sonographers performing standard biometry on high-specification machines. These findings have immediate implications for obstetrical care in low-resource settings, advancing the World Health Organization goal of ultrasonography estimation of GA for all pregnant people. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05433519</abstract><cop>United States</cop><pub>American Medical Association</pub><pmid>39088200</pmid><doi>10.1001/jama.2024.10770</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-7484
ispartof JAMA : the journal of the American Medical Association, 2024-08, Vol.332 (8), p.649-657
issn 0098-7484
1538-3598
1538-3598
language eng
recordid cdi_proquest_miscellaneous_3086957949
source MEDLINE; American Medical Association Journals
subjects Adult
AI in Medicine
Artificial Intelligence
Biometry - methods
Crown-Rump Length
Female
Gestational Age
Humans
Online First
Original Investigation
Point-of-Care Systems - economics
Pregnancy
Pregnancy Trimester, First
Prospective Studies
Software
Ultrasonography, Prenatal - economics
Ultrasonography, Prenatal - instrumentation
Ultrasonography, Prenatal - methods
Zambia
title Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostic%20Accuracy%20of%20an%20Integrated%20AI%20Tool%20to%20Estimate%20Gestational%20Age%20From%20Blind%20Ultrasound%20Sweeps&rft.jtitle=JAMA%20:%20the%20journal%20of%20the%20American%20Medical%20Association&rft.au=Stringer,%20Jeffrey%20S.%20A&rft.date=2024-08-27&rft.volume=332&rft.issue=8&rft.spage=649&rft.epage=657&rft.pages=649-657&rft.issn=0098-7484&rft.eissn=1538-3598&rft_id=info:doi/10.1001/jama.2024.10770&rft_dat=%3Cproquest_pubme%3E3086957949%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086957949&rft_id=info:pmid/39088200&rft_ama_id=2821666&rfr_iscdi=true