Organic Crystals and Optical Functions in Biology: Knowns and Unknowns

Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β‐guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (38), p.e2408060-n/a
Hauptverfasser: Addadi, Lia, Kronik, Leeor, Leiserowitz, Leslie, Oron, Dan, Weiner, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2408060
container_title Advanced materials (Weinheim)
container_volume 36
creator Addadi, Lia
Kronik, Leeor
Leiserowitz, Leslie
Oron, Dan
Weiner, Stephen
description Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β‐guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free‐electron‐rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in‐depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light‐manipulating materials. Crystals composed of organic molecules, mainly purines and pteridines, are produced by organisms to fulfill optical functions. Four levels of organization, molecular, structural, morphological, and superstructural, are examined to understand the optical, chemical, and biological principles of how such crystal assemblies manipulate light. This understanding may provide inspiration for new materials with tailor‐made optical performance.
doi_str_mv 10.1002/adma.202408060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086957091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086957091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-817cbe1f8d1b63d0fdb2753e35e194b44caa4d1a83cab31621de88d3362afa8d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp548kNlspFBBFXehsObZTpSROiRtV-fektBSJhenupOd9dXoQusQwxADkVplSDQkQBhxiOEJ9HBEcMhDRMeqDoFEoYsZ76Mz7JQCIGOJT1KMCeMKA9NFkVi-Uy3Uwrlu_VoUPlDPBbLXOtSqCSeP0Oq-cD3IX3OdVUS3au-DVVRu3A-fu4_s4RydZF7YX-zlA88nj-_g5nM6eXsajaahJxCHkONGpxRk3OI2pgcykJImopZHFgqWMaaWYwYpTrVKKY4KN5dxQGhOVqW4ZoJtd76quPhvr17LMvbZFoZytGi8p8FhECQjcodd_0GXV1K77TlKMCYuAY95Rwx2l68r72mZyVeelqluJQW4Ny61heTDcBa72tU1aWnPAf5R2gNgBm7yw7T91cvTwNvot_wIoxIZz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112450818</pqid></control><display><type>article</type><title>Organic Crystals and Optical Functions in Biology: Knowns and Unknowns</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Addadi, Lia ; Kronik, Leeor ; Leiserowitz, Leslie ; Oron, Dan ; Weiner, Stephen</creator><creatorcontrib>Addadi, Lia ; Kronik, Leeor ; Leiserowitz, Leslie ; Oron, Dan ; Weiner, Stephen</creatorcontrib><description>Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β‐guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free‐electron‐rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in‐depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light‐manipulating materials. Crystals composed of organic molecules, mainly purines and pteridines, are produced by organisms to fulfill optical functions. Four levels of organization, molecular, structural, morphological, and superstructural, are examined to understand the optical, chemical, and biological principles of how such crystal assemblies manipulate light. This understanding may provide inspiration for new materials with tailor‐made optical performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408060</identifier><identifier>PMID: 39087402</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Arrays ; Crystal structure ; Crystals ; guanine crystals ; Light ; Light reflection ; light scattering ; optical anisotropy ; Organic crystals ; polarizability ; reflectivity ; refractive index ; Refractivity</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (38), p.e2408060-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-817cbe1f8d1b63d0fdb2753e35e194b44caa4d1a83cab31621de88d3362afa8d3</cites><orcidid>0000-0001-8610-9012 ; 0000-0001-6331-8874 ; 0000-0003-1582-8532 ; 0000-0003-1693-648X ; 0000-0001-6791-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202408060$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202408060$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39087402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Addadi, Lia</creatorcontrib><creatorcontrib>Kronik, Leeor</creatorcontrib><creatorcontrib>Leiserowitz, Leslie</creatorcontrib><creatorcontrib>Oron, Dan</creatorcontrib><creatorcontrib>Weiner, Stephen</creatorcontrib><title>Organic Crystals and Optical Functions in Biology: Knowns and Unknowns</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β‐guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free‐electron‐rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in‐depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light‐manipulating materials. Crystals composed of organic molecules, mainly purines and pteridines, are produced by organisms to fulfill optical functions. Four levels of organization, molecular, structural, morphological, and superstructural, are examined to understand the optical, chemical, and biological principles of how such crystal assemblies manipulate light. This understanding may provide inspiration for new materials with tailor‐made optical performance.</description><subject>Anisotropy</subject><subject>Arrays</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>guanine crystals</subject><subject>Light</subject><subject>Light reflection</subject><subject>light scattering</subject><subject>optical anisotropy</subject><subject>Organic crystals</subject><subject>polarizability</subject><subject>reflectivity</subject><subject>refractive index</subject><subject>Refractivity</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp548kNlspFBBFXehsObZTpSROiRtV-fektBSJhenupOd9dXoQusQwxADkVplSDQkQBhxiOEJ9HBEcMhDRMeqDoFEoYsZ76Mz7JQCIGOJT1KMCeMKA9NFkVi-Uy3Uwrlu_VoUPlDPBbLXOtSqCSeP0Oq-cD3IX3OdVUS3au-DVVRu3A-fu4_s4RydZF7YX-zlA88nj-_g5nM6eXsajaahJxCHkONGpxRk3OI2pgcykJImopZHFgqWMaaWYwYpTrVKKY4KN5dxQGhOVqW4ZoJtd76quPhvr17LMvbZFoZytGi8p8FhECQjcodd_0GXV1K77TlKMCYuAY95Rwx2l68r72mZyVeelqluJQW4Ny61heTDcBa72tU1aWnPAf5R2gNgBm7yw7T91cvTwNvot_wIoxIZz</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Addadi, Lia</creator><creator>Kronik, Leeor</creator><creator>Leiserowitz, Leslie</creator><creator>Oron, Dan</creator><creator>Weiner, Stephen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8610-9012</orcidid><orcidid>https://orcid.org/0000-0001-6331-8874</orcidid><orcidid>https://orcid.org/0000-0003-1582-8532</orcidid><orcidid>https://orcid.org/0000-0003-1693-648X</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid></search><sort><creationdate>20240901</creationdate><title>Organic Crystals and Optical Functions in Biology: Knowns and Unknowns</title><author>Addadi, Lia ; Kronik, Leeor ; Leiserowitz, Leslie ; Oron, Dan ; Weiner, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-817cbe1f8d1b63d0fdb2753e35e194b44caa4d1a83cab31621de88d3362afa8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Arrays</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>guanine crystals</topic><topic>Light</topic><topic>Light reflection</topic><topic>light scattering</topic><topic>optical anisotropy</topic><topic>Organic crystals</topic><topic>polarizability</topic><topic>reflectivity</topic><topic>refractive index</topic><topic>Refractivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Addadi, Lia</creatorcontrib><creatorcontrib>Kronik, Leeor</creatorcontrib><creatorcontrib>Leiserowitz, Leslie</creatorcontrib><creatorcontrib>Oron, Dan</creatorcontrib><creatorcontrib>Weiner, Stephen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addadi, Lia</au><au>Kronik, Leeor</au><au>Leiserowitz, Leslie</au><au>Oron, Dan</au><au>Weiner, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Crystals and Optical Functions in Biology: Knowns and Unknowns</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>38</issue><spage>e2408060</spage><epage>n/a</epage><pages>e2408060-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them β‐guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free‐electron‐rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in‐depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light‐manipulating materials. Crystals composed of organic molecules, mainly purines and pteridines, are produced by organisms to fulfill optical functions. Four levels of organization, molecular, structural, morphological, and superstructural, are examined to understand the optical, chemical, and biological principles of how such crystal assemblies manipulate light. This understanding may provide inspiration for new materials with tailor‐made optical performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39087402</pmid><doi>10.1002/adma.202408060</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8610-9012</orcidid><orcidid>https://orcid.org/0000-0001-6331-8874</orcidid><orcidid>https://orcid.org/0000-0003-1582-8532</orcidid><orcidid>https://orcid.org/0000-0003-1693-648X</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (38), p.e2408060-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3086957091
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Arrays
Crystal structure
Crystals
guanine crystals
Light
Light reflection
light scattering
optical anisotropy
Organic crystals
polarizability
reflectivity
refractive index
Refractivity
title Organic Crystals and Optical Functions in Biology: Knowns and Unknowns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Crystals%20and%20Optical%20Functions%20in%20Biology:%20Knowns%20and%20Unknowns&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Addadi,%20Lia&rft.date=2024-09-01&rft.volume=36&rft.issue=38&rft.spage=e2408060&rft.epage=n/a&rft.pages=e2408060-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408060&rft_dat=%3Cproquest_cross%3E3086957091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112450818&rft_id=info:pmid/39087402&rfr_iscdi=true