A Cloud-Based System for Automated AI Image Analysis and Reporting

Although numerous AI algorithms have been published, the relatively small number of algorithms used clinically is partly due to the difficulty of implementing AI seamlessly into the clinical workflow for radiologists and for their healthcare enterprise. The authors developed an AI orchestrator to fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging informatics in medicine 2024-07
Hauptverfasser: Chatterjee, Neil, Duda, Jeffrey, Gee, James, Elahi, Ameena, Martin, Kristen, Doan, Van, Liu, Hannah, Maclean, Matthew, Rader, Daniel, Borthakur, Arijitt, Kahn, Charles, Sagreiya, Hersh, Witschey, Walter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of imaging informatics in medicine
container_volume
creator Chatterjee, Neil
Duda, Jeffrey
Gee, James
Elahi, Ameena
Martin, Kristen
Doan, Van
Liu, Hannah
Maclean, Matthew
Rader, Daniel
Borthakur, Arijitt
Kahn, Charles
Sagreiya, Hersh
Witschey, Walter
description Although numerous AI algorithms have been published, the relatively small number of algorithms used clinically is partly due to the difficulty of implementing AI seamlessly into the clinical workflow for radiologists and for their healthcare enterprise. The authors developed an AI orchestrator to facilitate the deployment and use of AI tools in a large multi-site university healthcare system and used it to conduct opportunistic screening for hepatic steatosis. During the 60-day study period, 991 abdominal CTs were processed at multiple different physical locations with an average turnaround time of 2.8 min. Quality control images and AI results were fully integrated into the existing clinical workflow. All input into and output from the server was in standardized data formats. The authors describe the methodology in detail; this framework can be adapted to integrate any clinical AI algorithm.
doi_str_mv 10.1007/s10278-024-01200-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086956378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086956378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-f69198a0ad7ae459b5e8d5a665e7adb3554ddab3dac0df28793754275abf446c3</originalsourceid><addsrcrecordid>eNpNkEtLw0AcxBdRbKn9Ah5kj15WN_veY1p8FAqCj_PyT3ZTAnnUbHJIP73RVvE0wzAzhx9C1wm9SyjV9zGhTBtCmSA0YZSSwxmaMysMYZbz839-hpYxlhmVXBkmlLhEM26pkTrRc7RK8bpqB09WEIPHb2PsQ42LtsPp0Lc19FOYbvCmhl3AaQPVGMuIofH4Nezbri-b3RW6KKCKYXnSBfp4fHhfP5Pty9NmnW5JzpjpSaFsYg1Q8BqCkDaTwXgJSsmgwWdcSuE9ZNxDTn3BjLZcS8G0hKwQQuV8gW6Pv_uu_RxC7F1dxjxUFTShHaLj1CgrFddmqrJjNe_aGLtQuH1X1tCNLqHuG5874nMTPveDzx2m0c3pf8jq4P8mv7D4F3QzahA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086956378</pqid></control><display><type>article</type><title>A Cloud-Based System for Automated AI Image Analysis and Reporting</title><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Chatterjee, Neil ; Duda, Jeffrey ; Gee, James ; Elahi, Ameena ; Martin, Kristen ; Doan, Van ; Liu, Hannah ; Maclean, Matthew ; Rader, Daniel ; Borthakur, Arijitt ; Kahn, Charles ; Sagreiya, Hersh ; Witschey, Walter</creator><creatorcontrib>Chatterjee, Neil ; Duda, Jeffrey ; Gee, James ; Elahi, Ameena ; Martin, Kristen ; Doan, Van ; Liu, Hannah ; Maclean, Matthew ; Rader, Daniel ; Borthakur, Arijitt ; Kahn, Charles ; Sagreiya, Hersh ; Witschey, Walter</creatorcontrib><description>Although numerous AI algorithms have been published, the relatively small number of algorithms used clinically is partly due to the difficulty of implementing AI seamlessly into the clinical workflow for radiologists and for their healthcare enterprise. The authors developed an AI orchestrator to facilitate the deployment and use of AI tools in a large multi-site university healthcare system and used it to conduct opportunistic screening for hepatic steatosis. During the 60-day study period, 991 abdominal CTs were processed at multiple different physical locations with an average turnaround time of 2.8 min. Quality control images and AI results were fully integrated into the existing clinical workflow. All input into and output from the server was in standardized data formats. The authors describe the methodology in detail; this framework can be adapted to integrate any clinical AI algorithm.</description><identifier>ISSN: 2948-2933</identifier><identifier>EISSN: 2948-2933</identifier><identifier>DOI: 10.1007/s10278-024-01200-z</identifier><identifier>PMID: 39085717</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Journal of imaging informatics in medicine, 2024-07</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-f69198a0ad7ae459b5e8d5a665e7adb3554ddab3dac0df28793754275abf446c3</cites><orcidid>0000-0002-7311-424X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39085717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Neil</creatorcontrib><creatorcontrib>Duda, Jeffrey</creatorcontrib><creatorcontrib>Gee, James</creatorcontrib><creatorcontrib>Elahi, Ameena</creatorcontrib><creatorcontrib>Martin, Kristen</creatorcontrib><creatorcontrib>Doan, Van</creatorcontrib><creatorcontrib>Liu, Hannah</creatorcontrib><creatorcontrib>Maclean, Matthew</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Borthakur, Arijitt</creatorcontrib><creatorcontrib>Kahn, Charles</creatorcontrib><creatorcontrib>Sagreiya, Hersh</creatorcontrib><creatorcontrib>Witschey, Walter</creatorcontrib><title>A Cloud-Based System for Automated AI Image Analysis and Reporting</title><title>Journal of imaging informatics in medicine</title><addtitle>J Imaging Inform Med</addtitle><description>Although numerous AI algorithms have been published, the relatively small number of algorithms used clinically is partly due to the difficulty of implementing AI seamlessly into the clinical workflow for radiologists and for their healthcare enterprise. The authors developed an AI orchestrator to facilitate the deployment and use of AI tools in a large multi-site university healthcare system and used it to conduct opportunistic screening for hepatic steatosis. During the 60-day study period, 991 abdominal CTs were processed at multiple different physical locations with an average turnaround time of 2.8 min. Quality control images and AI results were fully integrated into the existing clinical workflow. All input into and output from the server was in standardized data formats. The authors describe the methodology in detail; this framework can be adapted to integrate any clinical AI algorithm.</description><issn>2948-2933</issn><issn>2948-2933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AcxBdRbKn9Ah5kj15WN_veY1p8FAqCj_PyT3ZTAnnUbHJIP73RVvE0wzAzhx9C1wm9SyjV9zGhTBtCmSA0YZSSwxmaMysMYZbz839-hpYxlhmVXBkmlLhEM26pkTrRc7RK8bpqB09WEIPHb2PsQ42LtsPp0Lc19FOYbvCmhl3AaQPVGMuIofH4Nezbri-b3RW6KKCKYXnSBfp4fHhfP5Pty9NmnW5JzpjpSaFsYg1Q8BqCkDaTwXgJSsmgwWdcSuE9ZNxDTn3BjLZcS8G0hKwQQuV8gW6Pv_uu_RxC7F1dxjxUFTShHaLj1CgrFddmqrJjNe_aGLtQuH1X1tCNLqHuG5874nMTPveDzx2m0c3pf8jq4P8mv7D4F3QzahA</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Chatterjee, Neil</creator><creator>Duda, Jeffrey</creator><creator>Gee, James</creator><creator>Elahi, Ameena</creator><creator>Martin, Kristen</creator><creator>Doan, Van</creator><creator>Liu, Hannah</creator><creator>Maclean, Matthew</creator><creator>Rader, Daniel</creator><creator>Borthakur, Arijitt</creator><creator>Kahn, Charles</creator><creator>Sagreiya, Hersh</creator><creator>Witschey, Walter</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7311-424X</orcidid></search><sort><creationdate>20240731</creationdate><title>A Cloud-Based System for Automated AI Image Analysis and Reporting</title><author>Chatterjee, Neil ; Duda, Jeffrey ; Gee, James ; Elahi, Ameena ; Martin, Kristen ; Doan, Van ; Liu, Hannah ; Maclean, Matthew ; Rader, Daniel ; Borthakur, Arijitt ; Kahn, Charles ; Sagreiya, Hersh ; Witschey, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-f69198a0ad7ae459b5e8d5a665e7adb3554ddab3dac0df28793754275abf446c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Neil</creatorcontrib><creatorcontrib>Duda, Jeffrey</creatorcontrib><creatorcontrib>Gee, James</creatorcontrib><creatorcontrib>Elahi, Ameena</creatorcontrib><creatorcontrib>Martin, Kristen</creatorcontrib><creatorcontrib>Doan, Van</creatorcontrib><creatorcontrib>Liu, Hannah</creatorcontrib><creatorcontrib>Maclean, Matthew</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Borthakur, Arijitt</creatorcontrib><creatorcontrib>Kahn, Charles</creatorcontrib><creatorcontrib>Sagreiya, Hersh</creatorcontrib><creatorcontrib>Witschey, Walter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of imaging informatics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Neil</au><au>Duda, Jeffrey</au><au>Gee, James</au><au>Elahi, Ameena</au><au>Martin, Kristen</au><au>Doan, Van</au><au>Liu, Hannah</au><au>Maclean, Matthew</au><au>Rader, Daniel</au><au>Borthakur, Arijitt</au><au>Kahn, Charles</au><au>Sagreiya, Hersh</au><au>Witschey, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cloud-Based System for Automated AI Image Analysis and Reporting</atitle><jtitle>Journal of imaging informatics in medicine</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-07-31</date><risdate>2024</risdate><issn>2948-2933</issn><eissn>2948-2933</eissn><abstract>Although numerous AI algorithms have been published, the relatively small number of algorithms used clinically is partly due to the difficulty of implementing AI seamlessly into the clinical workflow for radiologists and for their healthcare enterprise. The authors developed an AI orchestrator to facilitate the deployment and use of AI tools in a large multi-site university healthcare system and used it to conduct opportunistic screening for hepatic steatosis. During the 60-day study period, 991 abdominal CTs were processed at multiple different physical locations with an average turnaround time of 2.8 min. Quality control images and AI results were fully integrated into the existing clinical workflow. All input into and output from the server was in standardized data formats. The authors describe the methodology in detail; this framework can be adapted to integrate any clinical AI algorithm.</abstract><cop>Switzerland</cop><pmid>39085717</pmid><doi>10.1007/s10278-024-01200-z</doi><orcidid>https://orcid.org/0000-0002-7311-424X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of imaging informatics in medicine, 2024-07
issn 2948-2933
2948-2933
language eng
recordid cdi_proquest_miscellaneous_3086956378
source SpringerNature Journals; PubMed Central
title A Cloud-Based System for Automated AI Image Analysis and Reporting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cloud-Based%20System%20for%20Automated%20AI%20Image%20Analysis%20and%20Reporting&rft.jtitle=Journal%20of%20imaging%20informatics%20in%20medicine&rft.au=Chatterjee,%20Neil&rft.date=2024-07-31&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01200-z&rft_dat=%3Cproquest_cross%3E3086956378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086956378&rft_id=info:pmid/39085717&rfr_iscdi=true