Transcriptomic balance and optimal growth are determined by cell size
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2024-09, Vol.84 (17), p.3288-3301.e3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3301.e3 |
---|---|
container_issue | 17 |
container_start_page | 3288 |
container_title | Molecular cell |
container_volume | 84 |
creator | Vidal, Pedro J. Pérez, Alexis P. Yahya, Galal Aldea, Martí |
description | Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
[Display omitted]
•Growth is a non-monotonic function that reaches a maximum around the critical size•The transcriptome of yeast and mouse cells becomes relatively inverted by cell size•Enforcing comparable transcriptomic inversions strongly restrains cell growth•Differential PIC binding to promoters explains the relative inversion by cell size
Although most cells maintain their size within limits, the underlying reasons are uncertain. Comparing cells smaller or larger than normal, Vidal et al. find that size imposes a strong imbalance in the transcriptional machinery relative to the genome that, in turn, leads to profound gene expression and cell growth defects. |
doi_str_mv | 10.1016/j.molcel.2024.07.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086954641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276524005811</els_id><sourcerecordid>3086954641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-aee9de0c7c224cef0491bf60d32189456a7897640bf510c28c390773b0711aea3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwDxDykUvCOnHs5IKEUHlIlbiUs-U4G3CVF3YKKr8eVykcOe0eZndmPkIuGcQMmLjZxG3fGGziBBIeg4wBsiMyZ1DIiDPBjw97IkU2I2febwAYz_LilMzSAnKesHxOlmunO2-cHca-tYaWutGdQaq7ivbDaFvd0DfXf43vVDukFY7oWtthRcsdDe4N9fYbz8lJrRuPF4e5IK8Py_X9U7R6eXy-v1tFJuFsjDRiUSEYaZKEG6yBF6ysBVRpyFLwTGiZF1JwKOuMgUlyE4JKmZYgGdOo0wW5nv4Orv_Yoh9Va_0-he6w33qVQi6KjAvOgpRPUuN67x3WanChjdspBmoPUG3UBFDtASqQKgAMZ1cHh23ZYvV39EssCG4nAYaenxad8sZiQFZZh2ZUVW__d_gBh-qC2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086954641</pqid></control><display><type>article</type><title>Transcriptomic balance and optimal growth are determined by cell size</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Vidal, Pedro J. ; Pérez, Alexis P. ; Yahya, Galal ; Aldea, Martí</creator><creatorcontrib>Vidal, Pedro J. ; Pérez, Alexis P. ; Yahya, Galal ; Aldea, Martí</creatorcontrib><description>Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
[Display omitted]
•Growth is a non-monotonic function that reaches a maximum around the critical size•The transcriptome of yeast and mouse cells becomes relatively inverted by cell size•Enforcing comparable transcriptomic inversions strongly restrains cell growth•Differential PIC binding to promoters explains the relative inversion by cell size
Although most cells maintain their size within limits, the underlying reasons are uncertain. Comparing cells smaller or larger than normal, Vidal et al. find that size imposes a strong imbalance in the transcriptional machinery relative to the genome that, in turn, leads to profound gene expression and cell growth defects.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2024.07.005</identifier><identifier>PMID: 39084218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Proliferation ; Cell Size ; fitness ; Gene Expression Regulation, Fungal ; growth ; Mice ; Promoter Regions, Genetic ; RNA polymerase II ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcriptome</subject><ispartof>Molecular cell, 2024-09, Vol.84 (17), p.3288-3301.e3</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-aee9de0c7c224cef0491bf60d32189456a7897640bf510c28c390773b0711aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2024.07.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39084218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal, Pedro J.</creatorcontrib><creatorcontrib>Pérez, Alexis P.</creatorcontrib><creatorcontrib>Yahya, Galal</creatorcontrib><creatorcontrib>Aldea, Martí</creatorcontrib><title>Transcriptomic balance and optimal growth are determined by cell size</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
[Display omitted]
•Growth is a non-monotonic function that reaches a maximum around the critical size•The transcriptome of yeast and mouse cells becomes relatively inverted by cell size•Enforcing comparable transcriptomic inversions strongly restrains cell growth•Differential PIC binding to promoters explains the relative inversion by cell size
Although most cells maintain their size within limits, the underlying reasons are uncertain. Comparing cells smaller or larger than normal, Vidal et al. find that size imposes a strong imbalance in the transcriptional machinery relative to the genome that, in turn, leads to profound gene expression and cell growth defects.</description><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Cell Size</subject><subject>fitness</subject><subject>Gene Expression Regulation, Fungal</subject><subject>growth</subject><subject>Mice</subject><subject>Promoter Regions, Genetic</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcriptome</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EoqXwDxDykUvCOnHs5IKEUHlIlbiUs-U4G3CVF3YKKr8eVykcOe0eZndmPkIuGcQMmLjZxG3fGGziBBIeg4wBsiMyZ1DIiDPBjw97IkU2I2febwAYz_LilMzSAnKesHxOlmunO2-cHca-tYaWutGdQaq7ivbDaFvd0DfXf43vVDukFY7oWtthRcsdDe4N9fYbz8lJrRuPF4e5IK8Py_X9U7R6eXy-v1tFJuFsjDRiUSEYaZKEG6yBF6ysBVRpyFLwTGiZF1JwKOuMgUlyE4JKmZYgGdOo0wW5nv4Orv_Yoh9Va_0-he6w33qVQi6KjAvOgpRPUuN67x3WanChjdspBmoPUG3UBFDtASqQKgAMZ1cHh23ZYvV39EssCG4nAYaenxad8sZiQFZZh2ZUVW__d_gBh-qC2A</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Vidal, Pedro J.</creator><creator>Pérez, Alexis P.</creator><creator>Yahya, Galal</creator><creator>Aldea, Martí</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240905</creationdate><title>Transcriptomic balance and optimal growth are determined by cell size</title><author>Vidal, Pedro J. ; Pérez, Alexis P. ; Yahya, Galal ; Aldea, Martí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-aee9de0c7c224cef0491bf60d32189456a7897640bf510c28c390773b0711aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Cell Size</topic><topic>fitness</topic><topic>Gene Expression Regulation, Fungal</topic><topic>growth</topic><topic>Mice</topic><topic>Promoter Regions, Genetic</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Pedro J.</creatorcontrib><creatorcontrib>Pérez, Alexis P.</creatorcontrib><creatorcontrib>Yahya, Galal</creatorcontrib><creatorcontrib>Aldea, Martí</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Pedro J.</au><au>Pérez, Alexis P.</au><au>Yahya, Galal</au><au>Aldea, Martí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic balance and optimal growth are determined by cell size</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>84</volume><issue>17</issue><spage>3288</spage><epage>3301.e3</epage><pages>3288-3301.e3</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
[Display omitted]
•Growth is a non-monotonic function that reaches a maximum around the critical size•The transcriptome of yeast and mouse cells becomes relatively inverted by cell size•Enforcing comparable transcriptomic inversions strongly restrains cell growth•Differential PIC binding to promoters explains the relative inversion by cell size
Although most cells maintain their size within limits, the underlying reasons are uncertain. Comparing cells smaller or larger than normal, Vidal et al. find that size imposes a strong imbalance in the transcriptional machinery relative to the genome that, in turn, leads to profound gene expression and cell growth defects.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39084218</pmid><doi>10.1016/j.molcel.2024.07.005</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2024-09, Vol.84 (17), p.3288-3301.e3 |
issn | 1097-2765 1097-4164 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086954641 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Cell Proliferation Cell Size fitness Gene Expression Regulation, Fungal growth Mice Promoter Regions, Genetic RNA polymerase II RNA Polymerase II - genetics RNA Polymerase II - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcriptome |
title | Transcriptomic balance and optimal growth are determined by cell size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20balance%20and%20optimal%20growth%20are%20determined%20by%20cell%20size&rft.jtitle=Molecular%20cell&rft.au=Vidal,%20Pedro%20J.&rft.date=2024-09-05&rft.volume=84&rft.issue=17&rft.spage=3288&rft.epage=3301.e3&rft.pages=3288-3301.e3&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2024.07.005&rft_dat=%3Cproquest_cross%3E3086954641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086954641&rft_id=info:pmid/39084218&rft_els_id=S1097276524005811&rfr_iscdi=true |