Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices
Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-09, Vol.36 (36), p.e2403176-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e2403176 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Li, Guoan Shi, Xiaofan Lin, Ting Yang, Guang Rossi, Marco Badawy, Ghada Zhang, Zhiyuan Shi, Jiayu Qian, Degui Lu, Fang Gu, Lin Wang, Anqi Tong, Bingbing Li, Peiling Lyu, Zhaozheng Liu, Guangtong Qu, Fanming Dou, Ziwei Pan, Dong Zhao, Jianhua Zhang, Qinghua Bakkers, Erik P. A. M. Nowak, Michał P. Wójcik, Paweł Lu, Li Shen, Jie |
description | Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems.
The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices. |
doi_str_mv | 10.1002/adma.202403176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086381456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086381456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlrEde-3j0i4UqRVC4uNoOfFk6ypxip0Utr8eL1uKxIXT6B0982qkh5AXDJYMgL9xfnBLDrwGwVbqEVkwyVlVg5GPyQKMkJVRtT4ixzlfA4BRoJ6SI2FAcw6rBfn5FVN2U-iRXuJ0NXo6dnQTtyEiphC3dLpC-tZFT9d92MYB40T3ab_e9NhOaYz0m7vFbo7tFEo43zUp-HDnfqfSdljQT7OL0zzQM7wNLeZn5Enn-ozP7-cJ-fJu8_n0vLr4-P7D6fqiarnRqqpbb4Bp16HxTK4Yl9DWHA3qrnGycU3XcG-YBlk3AlAVkmsGmrXarcCjOCGvD703afw-Y57sEHKLfe8ijnO2ArQSmtVSFfTVP-j1OKdYvrOCgRKqBi4LtTxQbRpzTtjZmxQGl3aWgd07sXsn9sFJOXh5Xzs3A_oH_I-EApgD8KNo2P2nzq7PLtd_y38BZheY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106364025</pqid></control><display><type>article</type><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</creator><creatorcontrib>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</creatorcontrib><description>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems.
The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403176</identifier><identifier>PMID: 39082207</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alignment ; Andreev reflection ; Argon ; ballistic transport ; band alignment ; Bend strength ; Coupling ; Devices ; Hybridization ; Indium antimonide ; Kitaev chain ; Lead ; Nanowires ; Spatial distribution ; Superconductivity ; Superconductors ; Wave functions ; wavefunction hybridization</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2403176-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</cites><orcidid>0000-0003-2269-3963 ; 0000-0002-7205-5081 ; 0000-0003-2067-6983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guoan</creatorcontrib><creatorcontrib>Shi, Xiaofan</creatorcontrib><creatorcontrib>Lin, Ting</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Shi, Jiayu</creatorcontrib><creatorcontrib>Qian, Degui</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Tong, Bingbing</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Lyu, Zhaozheng</creatorcontrib><creatorcontrib>Liu, Guangtong</creatorcontrib><creatorcontrib>Qu, Fanming</creatorcontrib><creatorcontrib>Dou, Ziwei</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Wójcik, Paweł</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems.
The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</description><subject>Alignment</subject><subject>Andreev reflection</subject><subject>Argon</subject><subject>ballistic transport</subject><subject>band alignment</subject><subject>Bend strength</subject><subject>Coupling</subject><subject>Devices</subject><subject>Hybridization</subject><subject>Indium antimonide</subject><subject>Kitaev chain</subject><subject>Lead</subject><subject>Nanowires</subject><subject>Spatial distribution</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Wave functions</subject><subject>wavefunction hybridization</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlrEde-3j0i4UqRVC4uNoOfFk6ypxip0Utr8eL1uKxIXT6B0982qkh5AXDJYMgL9xfnBLDrwGwVbqEVkwyVlVg5GPyQKMkJVRtT4ixzlfA4BRoJ6SI2FAcw6rBfn5FVN2U-iRXuJ0NXo6dnQTtyEiphC3dLpC-tZFT9d92MYB40T3ab_e9NhOaYz0m7vFbo7tFEo43zUp-HDnfqfSdljQT7OL0zzQM7wNLeZn5Enn-ozP7-cJ-fJu8_n0vLr4-P7D6fqiarnRqqpbb4Bp16HxTK4Yl9DWHA3qrnGycU3XcG-YBlk3AlAVkmsGmrXarcCjOCGvD703afw-Y57sEHKLfe8ijnO2ArQSmtVSFfTVP-j1OKdYvrOCgRKqBi4LtTxQbRpzTtjZmxQGl3aWgd07sXsn9sFJOXh5Xzs3A_oH_I-EApgD8KNo2P2nzq7PLtd_y38BZheY4Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Li, Guoan</creator><creator>Shi, Xiaofan</creator><creator>Lin, Ting</creator><creator>Yang, Guang</creator><creator>Rossi, Marco</creator><creator>Badawy, Ghada</creator><creator>Zhang, Zhiyuan</creator><creator>Shi, Jiayu</creator><creator>Qian, Degui</creator><creator>Lu, Fang</creator><creator>Gu, Lin</creator><creator>Wang, Anqi</creator><creator>Tong, Bingbing</creator><creator>Li, Peiling</creator><creator>Lyu, Zhaozheng</creator><creator>Liu, Guangtong</creator><creator>Qu, Fanming</creator><creator>Dou, Ziwei</creator><creator>Pan, Dong</creator><creator>Zhao, Jianhua</creator><creator>Zhang, Qinghua</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Nowak, Michał P.</creator><creator>Wójcik, Paweł</creator><creator>Lu, Li</creator><creator>Shen, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2269-3963</orcidid><orcidid>https://orcid.org/0000-0002-7205-5081</orcidid><orcidid>https://orcid.org/0000-0003-2067-6983</orcidid></search><sort><creationdate>20240901</creationdate><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><author>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Andreev reflection</topic><topic>Argon</topic><topic>ballistic transport</topic><topic>band alignment</topic><topic>Bend strength</topic><topic>Coupling</topic><topic>Devices</topic><topic>Hybridization</topic><topic>Indium antimonide</topic><topic>Kitaev chain</topic><topic>Lead</topic><topic>Nanowires</topic><topic>Spatial distribution</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Wave functions</topic><topic>wavefunction hybridization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoan</creatorcontrib><creatorcontrib>Shi, Xiaofan</creatorcontrib><creatorcontrib>Lin, Ting</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Shi, Jiayu</creatorcontrib><creatorcontrib>Qian, Degui</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Tong, Bingbing</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Lyu, Zhaozheng</creatorcontrib><creatorcontrib>Liu, Guangtong</creatorcontrib><creatorcontrib>Qu, Fanming</creatorcontrib><creatorcontrib>Dou, Ziwei</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Wójcik, Paweł</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoan</au><au>Shi, Xiaofan</au><au>Lin, Ting</au><au>Yang, Guang</au><au>Rossi, Marco</au><au>Badawy, Ghada</au><au>Zhang, Zhiyuan</au><au>Shi, Jiayu</au><au>Qian, Degui</au><au>Lu, Fang</au><au>Gu, Lin</au><au>Wang, Anqi</au><au>Tong, Bingbing</au><au>Li, Peiling</au><au>Lyu, Zhaozheng</au><au>Liu, Guangtong</au><au>Qu, Fanming</au><au>Dou, Ziwei</au><au>Pan, Dong</au><au>Zhao, Jianhua</au><au>Zhang, Qinghua</au><au>Bakkers, Erik P. A. M.</au><au>Nowak, Michał P.</au><au>Wójcik, Paweł</au><au>Lu, Li</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>36</issue><spage>e2403176</spage><epage>n/a</epage><pages>e2403176-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems.
The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39082207</pmid><doi>10.1002/adma.202403176</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2269-3963</orcidid><orcidid>https://orcid.org/0000-0002-7205-5081</orcidid><orcidid>https://orcid.org/0000-0003-2067-6983</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2403176-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086381456 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Alignment Andreev reflection Argon ballistic transport band alignment Bend strength Coupling Devices Hybridization Indium antimonide Kitaev chain Lead Nanowires Spatial distribution Superconductivity Superconductors Wave functions wavefunction hybridization |
title | Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Method%20of%20Engineering%20the%20Band%20Alignment%20and%20the%20Electron%20Wavefunction%20Hybridization%20of%20Hybrid%20Quantum%20Devices&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Guoan&rft.date=2024-09-01&rft.volume=36&rft.issue=36&rft.spage=e2403176&rft.epage=n/a&rft.pages=e2403176-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403176&rft_dat=%3Cproquest_cross%3E3086381456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106364025&rft_id=info:pmid/39082207&rfr_iscdi=true |