Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices

Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (36), p.e2403176-n/a
Hauptverfasser: Li, Guoan, Shi, Xiaofan, Lin, Ting, Yang, Guang, Rossi, Marco, Badawy, Ghada, Zhang, Zhiyuan, Shi, Jiayu, Qian, Degui, Lu, Fang, Gu, Lin, Wang, Anqi, Tong, Bingbing, Li, Peiling, Lyu, Zhaozheng, Liu, Guangtong, Qu, Fanming, Dou, Ziwei, Pan, Dong, Zhao, Jianhua, Zhang, Qinghua, Bakkers, Erik P. A. M., Nowak, Michał P., Wójcik, Paweł, Lu, Li, Shen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e2403176
container_title Advanced materials (Weinheim)
container_volume 36
creator Li, Guoan
Shi, Xiaofan
Lin, Ting
Yang, Guang
Rossi, Marco
Badawy, Ghada
Zhang, Zhiyuan
Shi, Jiayu
Qian, Degui
Lu, Fang
Gu, Lin
Wang, Anqi
Tong, Bingbing
Li, Peiling
Lyu, Zhaozheng
Liu, Guangtong
Qu, Fanming
Dou, Ziwei
Pan, Dong
Zhao, Jianhua
Zhang, Qinghua
Bakkers, Erik P. A. M.
Nowak, Michał P.
Wójcik, Paweł
Lu, Li
Shen, Jie
description Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems. The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.
doi_str_mv 10.1002/adma.202403176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086381456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086381456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlrEde-3j0i4UqRVC4uNoOfFk6ypxip0Utr8eL1uKxIXT6B0982qkh5AXDJYMgL9xfnBLDrwGwVbqEVkwyVlVg5GPyQKMkJVRtT4ixzlfA4BRoJ6SI2FAcw6rBfn5FVN2U-iRXuJ0NXo6dnQTtyEiphC3dLpC-tZFT9d92MYB40T3ab_e9NhOaYz0m7vFbo7tFEo43zUp-HDnfqfSdljQT7OL0zzQM7wNLeZn5Enn-ozP7-cJ-fJu8_n0vLr4-P7D6fqiarnRqqpbb4Bp16HxTK4Yl9DWHA3qrnGycU3XcG-YBlk3AlAVkmsGmrXarcCjOCGvD703afw-Y57sEHKLfe8ijnO2ArQSmtVSFfTVP-j1OKdYvrOCgRKqBi4LtTxQbRpzTtjZmxQGl3aWgd07sXsn9sFJOXh5Xzs3A_oH_I-EApgD8KNo2P2nzq7PLtd_y38BZheY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106364025</pqid></control><display><type>article</type><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</creator><creatorcontrib>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</creatorcontrib><description>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems. The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403176</identifier><identifier>PMID: 39082207</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alignment ; Andreev reflection ; Argon ; ballistic transport ; band alignment ; Bend strength ; Coupling ; Devices ; Hybridization ; Indium antimonide ; Kitaev chain ; Lead ; Nanowires ; Spatial distribution ; Superconductivity ; Superconductors ; Wave functions ; wavefunction hybridization</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2403176-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</cites><orcidid>0000-0003-2269-3963 ; 0000-0002-7205-5081 ; 0000-0003-2067-6983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guoan</creatorcontrib><creatorcontrib>Shi, Xiaofan</creatorcontrib><creatorcontrib>Lin, Ting</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Shi, Jiayu</creatorcontrib><creatorcontrib>Qian, Degui</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Tong, Bingbing</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Lyu, Zhaozheng</creatorcontrib><creatorcontrib>Liu, Guangtong</creatorcontrib><creatorcontrib>Qu, Fanming</creatorcontrib><creatorcontrib>Dou, Ziwei</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Wójcik, Paweł</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems. The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</description><subject>Alignment</subject><subject>Andreev reflection</subject><subject>Argon</subject><subject>ballistic transport</subject><subject>band alignment</subject><subject>Bend strength</subject><subject>Coupling</subject><subject>Devices</subject><subject>Hybridization</subject><subject>Indium antimonide</subject><subject>Kitaev chain</subject><subject>Lead</subject><subject>Nanowires</subject><subject>Spatial distribution</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Wave functions</subject><subject>wavefunction hybridization</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlrEde-3j0i4UqRVC4uNoOfFk6ypxip0Utr8eL1uKxIXT6B0982qkh5AXDJYMgL9xfnBLDrwGwVbqEVkwyVlVg5GPyQKMkJVRtT4ixzlfA4BRoJ6SI2FAcw6rBfn5FVN2U-iRXuJ0NXo6dnQTtyEiphC3dLpC-tZFT9d92MYB40T3ab_e9NhOaYz0m7vFbo7tFEo43zUp-HDnfqfSdljQT7OL0zzQM7wNLeZn5Enn-ozP7-cJ-fJu8_n0vLr4-P7D6fqiarnRqqpbb4Bp16HxTK4Yl9DWHA3qrnGycU3XcG-YBlk3AlAVkmsGmrXarcCjOCGvD703afw-Y57sEHKLfe8ijnO2ArQSmtVSFfTVP-j1OKdYvrOCgRKqBi4LtTxQbRpzTtjZmxQGl3aWgd07sXsn9sFJOXh5Xzs3A_oH_I-EApgD8KNo2P2nzq7PLtd_y38BZheY4Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Li, Guoan</creator><creator>Shi, Xiaofan</creator><creator>Lin, Ting</creator><creator>Yang, Guang</creator><creator>Rossi, Marco</creator><creator>Badawy, Ghada</creator><creator>Zhang, Zhiyuan</creator><creator>Shi, Jiayu</creator><creator>Qian, Degui</creator><creator>Lu, Fang</creator><creator>Gu, Lin</creator><creator>Wang, Anqi</creator><creator>Tong, Bingbing</creator><creator>Li, Peiling</creator><creator>Lyu, Zhaozheng</creator><creator>Liu, Guangtong</creator><creator>Qu, Fanming</creator><creator>Dou, Ziwei</creator><creator>Pan, Dong</creator><creator>Zhao, Jianhua</creator><creator>Zhang, Qinghua</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Nowak, Michał P.</creator><creator>Wójcik, Paweł</creator><creator>Lu, Li</creator><creator>Shen, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2269-3963</orcidid><orcidid>https://orcid.org/0000-0002-7205-5081</orcidid><orcidid>https://orcid.org/0000-0003-2067-6983</orcidid></search><sort><creationdate>20240901</creationdate><title>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</title><author>Li, Guoan ; Shi, Xiaofan ; Lin, Ting ; Yang, Guang ; Rossi, Marco ; Badawy, Ghada ; Zhang, Zhiyuan ; Shi, Jiayu ; Qian, Degui ; Lu, Fang ; Gu, Lin ; Wang, Anqi ; Tong, Bingbing ; Li, Peiling ; Lyu, Zhaozheng ; Liu, Guangtong ; Qu, Fanming ; Dou, Ziwei ; Pan, Dong ; Zhao, Jianhua ; Zhang, Qinghua ; Bakkers, Erik P. A. M. ; Nowak, Michał P. ; Wójcik, Paweł ; Lu, Li ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2986-4cd9018afe9d1571250c42e9e8fba5babfb2d918054b30e68af281081c8a70de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Andreev reflection</topic><topic>Argon</topic><topic>ballistic transport</topic><topic>band alignment</topic><topic>Bend strength</topic><topic>Coupling</topic><topic>Devices</topic><topic>Hybridization</topic><topic>Indium antimonide</topic><topic>Kitaev chain</topic><topic>Lead</topic><topic>Nanowires</topic><topic>Spatial distribution</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Wave functions</topic><topic>wavefunction hybridization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoan</creatorcontrib><creatorcontrib>Shi, Xiaofan</creatorcontrib><creatorcontrib>Lin, Ting</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Rossi, Marco</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Shi, Jiayu</creatorcontrib><creatorcontrib>Qian, Degui</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wang, Anqi</creatorcontrib><creatorcontrib>Tong, Bingbing</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Lyu, Zhaozheng</creatorcontrib><creatorcontrib>Liu, Guangtong</creatorcontrib><creatorcontrib>Qu, Fanming</creatorcontrib><creatorcontrib>Dou, Ziwei</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Wójcik, Paweł</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoan</au><au>Shi, Xiaofan</au><au>Lin, Ting</au><au>Yang, Guang</au><au>Rossi, Marco</au><au>Badawy, Ghada</au><au>Zhang, Zhiyuan</au><au>Shi, Jiayu</au><au>Qian, Degui</au><au>Lu, Fang</au><au>Gu, Lin</au><au>Wang, Anqi</au><au>Tong, Bingbing</au><au>Li, Peiling</au><au>Lyu, Zhaozheng</au><au>Liu, Guangtong</au><au>Qu, Fanming</au><au>Dou, Ziwei</au><au>Pan, Dong</au><au>Zhao, Jianhua</au><au>Zhang, Qinghua</au><au>Bakkers, Erik P. A. M.</au><au>Nowak, Michał P.</au><au>Wójcik, Paweł</au><au>Lu, Li</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>36</issue><spage>e2403176</spage><epage>n/a</epage><pages>e2403176-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger–Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co‐tunneling—key ingredients for the Kitaev chain—are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb‐InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well‐controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid‐state systems. The versatile approach is fully compatible with the lithography processes to create an atomically connected interface and effectively modulate the band alignment at the interface. This method is also generic for other materials and will ultimately result in the desirable requirements for topological and Andreev devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39082207</pmid><doi>10.1002/adma.202403176</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2269-3963</orcidid><orcidid>https://orcid.org/0000-0002-7205-5081</orcidid><orcidid>https://orcid.org/0000-0003-2067-6983</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2403176-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3086381456
source Wiley Online Library - AutoHoldings Journals
subjects Alignment
Andreev reflection
Argon
ballistic transport
band alignment
Bend strength
Coupling
Devices
Hybridization
Indium antimonide
Kitaev chain
Lead
Nanowires
Spatial distribution
Superconductivity
Superconductors
Wave functions
wavefunction hybridization
title Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Method%20of%20Engineering%20the%20Band%20Alignment%20and%20the%20Electron%20Wavefunction%20Hybridization%20of%20Hybrid%20Quantum%20Devices&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Guoan&rft.date=2024-09-01&rft.volume=36&rft.issue=36&rft.spage=e2403176&rft.epage=n/a&rft.pages=e2403176-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403176&rft_dat=%3Cproquest_cross%3E3086381456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106364025&rft_id=info:pmid/39082207&rfr_iscdi=true