Fractional-Order Robust Control Design under parametric uncertain approach

This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2024-10, Vol.153, p.420-432
Hauptverfasser: Martins-Gomes, Marcus C., de C. Ayres Junior, Florindo A., da Costa Junior, Carlos T., de Bessa, Iury V., da S. Farias, Nei Junior, de Medeiros, Renan L.P., Silva, Luiz E.S., de Lucena Júnior, Vicente F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue
container_start_page 420
container_title ISA transactions
container_volume 153
creator Martins-Gomes, Marcus C.
de C. Ayres Junior, Florindo A.
da Costa Junior, Carlos T.
de Bessa, Iury V.
da S. Farias, Nei Junior
de Medeiros, Renan L.P.
Silva, Luiz E.S.
de Lucena Júnior, Vicente F.
description This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty. •New method for fractional controllers using Interval poles, improving performance.•Sets region to sweep frequency based on settling time and stability region of α.•Reduces conservativeness, allowing stability changes for flexible performance.•Ensures target with chosen fractional-order controller based on desired actions.
doi_str_mv 10.1016/j.isatra.2024.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086380342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057824003562</els_id><sourcerecordid>3086380342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-19ed80c2c0145c11ea14a2193e5d1c123c7978dfc537bf219590aad9a5714f703</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78A5EevbROknbTXARZvxEWRM9hNp1qlm67JqngvzfLqkdPA--8M-_Mw9gph4IDn14sCxcweiwEiLIAVYCQO2zCa6XzJIldNgHgOodK1QfsMIQlAIhK1_vsQGpQWtVywh5vPdrohh67fO4b8tnzsBhDzGZDH_3QZdcU3Fufjf2mt0aPK4re2SRY8hFdn-F67Qe078dsr8Uu0MlPPWKvtzcvs_v8aX73MLt6yq0oecy5pqYGKyzwsrKcE_ISBdeSqoZbLqTdnNa0tpJq0aZGpQGx0VgpXrYK5BE73-5NsR8jhWhWLljqOuxpGIORUE9lDbIUyVpurdYPIXhqzdq7Ffovw8FsKJql2VI0G4oGlEkU09jZT8K4WFHzN_SLLRkutwZKf3468iZYR4lI4zzZaJrB_Z_wDbq6hQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086380342</pqid></control><display><type>article</type><title>Fractional-Order Robust Control Design under parametric uncertain approach</title><source>Elsevier ScienceDirect Journals</source><creator>Martins-Gomes, Marcus C. ; de C. Ayres Junior, Florindo A. ; da Costa Junior, Carlos T. ; de Bessa, Iury V. ; da S. Farias, Nei Junior ; de Medeiros, Renan L.P. ; Silva, Luiz E.S. ; de Lucena Júnior, Vicente F.</creator><creatorcontrib>Martins-Gomes, Marcus C. ; de C. Ayres Junior, Florindo A. ; da Costa Junior, Carlos T. ; de Bessa, Iury V. ; da S. Farias, Nei Junior ; de Medeiros, Renan L.P. ; Silva, Luiz E.S. ; de Lucena Júnior, Vicente F.</creatorcontrib><description>This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty. •New method for fractional controllers using Interval poles, improving performance.•Sets region to sweep frequency based on settling time and stability region of α.•Reduces conservativeness, allowing stability changes for flexible performance.•Ensures target with chosen fractional-order controller based on desired actions.</description><identifier>ISSN: 0019-0578</identifier><identifier>ISSN: 1879-2022</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2024.07.023</identifier><identifier>PMID: 39079783</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fractional-order control ; Parametric uncertainty ; Robust control ; Robustness performance ; Thermal system</subject><ispartof>ISA transactions, 2024-10, Vol.153, p.420-432</ispartof><rights>2024 International Society of Automation</rights><rights>Copyright © 2024 International Society of Automation. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-19ed80c2c0145c11ea14a2193e5d1c123c7978dfc537bf219590aad9a5714f703</cites><orcidid>0000-0001-7660-8723 ; 0000-0001-6016-7089 ; 0000-0001-9864-2850 ; 0000-0002-0266-1019 ; 0000-0002-1645-2736 ; 0000-0002-1319-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057824003562$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39079783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins-Gomes, Marcus C.</creatorcontrib><creatorcontrib>de C. Ayres Junior, Florindo A.</creatorcontrib><creatorcontrib>da Costa Junior, Carlos T.</creatorcontrib><creatorcontrib>de Bessa, Iury V.</creatorcontrib><creatorcontrib>da S. Farias, Nei Junior</creatorcontrib><creatorcontrib>de Medeiros, Renan L.P.</creatorcontrib><creatorcontrib>Silva, Luiz E.S.</creatorcontrib><creatorcontrib>de Lucena Júnior, Vicente F.</creatorcontrib><title>Fractional-Order Robust Control Design under parametric uncertain approach</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty. •New method for fractional controllers using Interval poles, improving performance.•Sets region to sweep frequency based on settling time and stability region of α.•Reduces conservativeness, allowing stability changes for flexible performance.•Ensures target with chosen fractional-order controller based on desired actions.</description><subject>Fractional-order control</subject><subject>Parametric uncertainty</subject><subject>Robust control</subject><subject>Robustness performance</subject><subject>Thermal system</subject><issn>0019-0578</issn><issn>1879-2022</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoun78A5EevbROknbTXARZvxEWRM9hNp1qlm67JqngvzfLqkdPA--8M-_Mw9gph4IDn14sCxcweiwEiLIAVYCQO2zCa6XzJIldNgHgOodK1QfsMIQlAIhK1_vsQGpQWtVywh5vPdrohh67fO4b8tnzsBhDzGZDH_3QZdcU3Fufjf2mt0aPK4re2SRY8hFdn-F67Qe078dsr8Uu0MlPPWKvtzcvs_v8aX73MLt6yq0oecy5pqYGKyzwsrKcE_ISBdeSqoZbLqTdnNa0tpJq0aZGpQGx0VgpXrYK5BE73-5NsR8jhWhWLljqOuxpGIORUE9lDbIUyVpurdYPIXhqzdq7Ffovw8FsKJql2VI0G4oGlEkU09jZT8K4WFHzN_SLLRkutwZKf3468iZYR4lI4zzZaJrB_Z_wDbq6hQU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Martins-Gomes, Marcus C.</creator><creator>de C. Ayres Junior, Florindo A.</creator><creator>da Costa Junior, Carlos T.</creator><creator>de Bessa, Iury V.</creator><creator>da S. Farias, Nei Junior</creator><creator>de Medeiros, Renan L.P.</creator><creator>Silva, Luiz E.S.</creator><creator>de Lucena Júnior, Vicente F.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7660-8723</orcidid><orcidid>https://orcid.org/0000-0001-6016-7089</orcidid><orcidid>https://orcid.org/0000-0001-9864-2850</orcidid><orcidid>https://orcid.org/0000-0002-0266-1019</orcidid><orcidid>https://orcid.org/0000-0002-1645-2736</orcidid><orcidid>https://orcid.org/0000-0002-1319-4794</orcidid></search><sort><creationdate>202410</creationdate><title>Fractional-Order Robust Control Design under parametric uncertain approach</title><author>Martins-Gomes, Marcus C. ; de C. Ayres Junior, Florindo A. ; da Costa Junior, Carlos T. ; de Bessa, Iury V. ; da S. Farias, Nei Junior ; de Medeiros, Renan L.P. ; Silva, Luiz E.S. ; de Lucena Júnior, Vicente F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-19ed80c2c0145c11ea14a2193e5d1c123c7978dfc537bf219590aad9a5714f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fractional-order control</topic><topic>Parametric uncertainty</topic><topic>Robust control</topic><topic>Robustness performance</topic><topic>Thermal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins-Gomes, Marcus C.</creatorcontrib><creatorcontrib>de C. Ayres Junior, Florindo A.</creatorcontrib><creatorcontrib>da Costa Junior, Carlos T.</creatorcontrib><creatorcontrib>de Bessa, Iury V.</creatorcontrib><creatorcontrib>da S. Farias, Nei Junior</creatorcontrib><creatorcontrib>de Medeiros, Renan L.P.</creatorcontrib><creatorcontrib>Silva, Luiz E.S.</creatorcontrib><creatorcontrib>de Lucena Júnior, Vicente F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins-Gomes, Marcus C.</au><au>de C. Ayres Junior, Florindo A.</au><au>da Costa Junior, Carlos T.</au><au>de Bessa, Iury V.</au><au>da S. Farias, Nei Junior</au><au>de Medeiros, Renan L.P.</au><au>Silva, Luiz E.S.</au><au>de Lucena Júnior, Vicente F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-Order Robust Control Design under parametric uncertain approach</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2024-10</date><risdate>2024</risdate><volume>153</volume><spage>420</spage><epage>432</epage><pages>420-432</pages><issn>0019-0578</issn><issn>1879-2022</issn><eissn>1879-2022</eissn><abstract>This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty. •New method for fractional controllers using Interval poles, improving performance.•Sets region to sweep frequency based on settling time and stability region of α.•Reduces conservativeness, allowing stability changes for flexible performance.•Ensures target with chosen fractional-order controller based on desired actions.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39079783</pmid><doi>10.1016/j.isatra.2024.07.023</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7660-8723</orcidid><orcidid>https://orcid.org/0000-0001-6016-7089</orcidid><orcidid>https://orcid.org/0000-0001-9864-2850</orcidid><orcidid>https://orcid.org/0000-0002-0266-1019</orcidid><orcidid>https://orcid.org/0000-0002-1645-2736</orcidid><orcidid>https://orcid.org/0000-0002-1319-4794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2024-10, Vol.153, p.420-432
issn 0019-0578
1879-2022
1879-2022
language eng
recordid cdi_proquest_miscellaneous_3086380342
source Elsevier ScienceDirect Journals
subjects Fractional-order control
Parametric uncertainty
Robust control
Robustness performance
Thermal system
title Fractional-Order Robust Control Design under parametric uncertain approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-Order%20Robust%20Control%20Design%20under%20parametric%20uncertain%20approach&rft.jtitle=ISA%20transactions&rft.au=Martins-Gomes,%20Marcus%20C.&rft.date=2024-10&rft.volume=153&rft.spage=420&rft.epage=432&rft.pages=420-432&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2024.07.023&rft_dat=%3Cproquest_cross%3E3086380342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086380342&rft_id=info:pmid/39079783&rft_els_id=S0019057824003562&rfr_iscdi=true