Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux

The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (32), p.42660-42673
Hauptverfasser: Wu, Ning, Liu, Yingguang, Wang, Shuo, Xing, Zhibo, Tang, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42673
container_issue 32
container_start_page 42660
container_title ACS applied materials & interfaces
container_volume 16
creator Wu, Ning
Liu, Yingguang
Wang, Shuo
Xing, Zhibo
Tang, Guihua
description The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high thermal conductivity both within and beyond the plane, effectively addresses this challenge. This study investigated a 3D hybrid structure composed of graphene and boron nitride nanotubes (GR-BNNTs) using non-equilibrium molecular dynamics simulations. This approach allowed the examination of the formation mechanisms and key factors influencing thermal rectification (TR) in these materials. Our findings reveal a novel mechanism for independently regulating forward and backward heat fluxes in GR-BNNTs. By manipulating the thermal properties of the BNNTs and the graphene layer, the TR ratio can be controlled flexibly. Additionally, we identify specific strategies for independently adjusting the heat flux, such as altering the intercolumn distance of BNNTs, which impacts the backward flux merely, while applying strain to affect the forward flux merely. This research introduces a novel concept of independent regulation of forward and backward heat fluxes, providing significant insights into phonon thermal transport in 3D hybrid structures.
doi_str_mv 10.1021/acsami.4c09390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086066272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086066272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-bd9a1ef9fdf06884315b7505ae22d2f2ed38fe443c56e320960eeca0107f21b43</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3Uiq_2yhH5WFXare042YQbrFgWiYJE6Tma2GOtaWIvtqPCjb9Q9R_2l9SwW269zJeeeaWZl5AjzqacCf4FVITBTqViTdGwHbLPGykntSjFu7dayj1yEOM9Y1UhWLlL9jI6q0Ul98mvuxWGAXp6iypZYxUk6x21jl4EWK_Q4Z_n32c-5Nm1TcFqpNfgfBo7pMunLg_otxRGlcaA8YSeOnrpNK4xB5fo3LsUfE-_olqBs3Ggxge68OEnBE3BaXoG6sdrs0RIdNGPjx_IewN9xI_bfEi-L87v5svJ1c3F5fz0agKCl2nS6QY4msZow6q6lgUvu1nJSkAhtDACdVEblLJQZYX57KZiiAoYZzMjeCeLQ_Jpo7sO_mHEmNrBRoV9Dw79GNuC1RWrKjETGZ1uUBV8jAFNuw52gPDUcta-2NBubGi3NuSF46322A2o3_B_f8_A5w2QF9t7PwaXT_2f2l_eUJVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086066272</pqid></control><display><type>article</type><title>Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux</title><source>American Chemical Society Journals</source><creator>Wu, Ning ; Liu, Yingguang ; Wang, Shuo ; Xing, Zhibo ; Tang, Guihua</creator><creatorcontrib>Wu, Ning ; Liu, Yingguang ; Wang, Shuo ; Xing, Zhibo ; Tang, Guihua</creatorcontrib><description>The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high thermal conductivity both within and beyond the plane, effectively addresses this challenge. This study investigated a 3D hybrid structure composed of graphene and boron nitride nanotubes (GR-BNNTs) using non-equilibrium molecular dynamics simulations. This approach allowed the examination of the formation mechanisms and key factors influencing thermal rectification (TR) in these materials. Our findings reveal a novel mechanism for independently regulating forward and backward heat fluxes in GR-BNNTs. By manipulating the thermal properties of the BNNTs and the graphene layer, the TR ratio can be controlled flexibly. Additionally, we identify specific strategies for independently adjusting the heat flux, such as altering the intercolumn distance of BNNTs, which impacts the backward flux merely, while applying strain to affect the forward flux merely. This research introduces a novel concept of independent regulation of forward and backward heat fluxes, providing significant insights into phonon thermal transport in 3D hybrid structures.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09390</identifier><identifier>PMID: 39078264</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2024-08, Vol.16 (32), p.42660-42673</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-bd9a1ef9fdf06884315b7505ae22d2f2ed38fe443c56e320960eeca0107f21b43</cites><orcidid>0000-0003-3281-1855 ; 0000-0002-7881-2573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c09390$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c09390$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39078264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Liu, Yingguang</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Xing, Zhibo</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><title>Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high thermal conductivity both within and beyond the plane, effectively addresses this challenge. This study investigated a 3D hybrid structure composed of graphene and boron nitride nanotubes (GR-BNNTs) using non-equilibrium molecular dynamics simulations. This approach allowed the examination of the formation mechanisms and key factors influencing thermal rectification (TR) in these materials. Our findings reveal a novel mechanism for independently regulating forward and backward heat fluxes in GR-BNNTs. By manipulating the thermal properties of the BNNTs and the graphene layer, the TR ratio can be controlled flexibly. Additionally, we identify specific strategies for independently adjusting the heat flux, such as altering the intercolumn distance of BNNTs, which impacts the backward flux merely, while applying strain to affect the forward flux merely. This research introduces a novel concept of independent regulation of forward and backward heat fluxes, providing significant insights into phonon thermal transport in 3D hybrid structures.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3Uiq_2yhH5WFXare042YQbrFgWiYJE6Tma2GOtaWIvtqPCjb9Q9R_2l9SwW269zJeeeaWZl5AjzqacCf4FVITBTqViTdGwHbLPGykntSjFu7dayj1yEOM9Y1UhWLlL9jI6q0Ul98mvuxWGAXp6iypZYxUk6x21jl4EWK_Q4Z_n32c-5Nm1TcFqpNfgfBo7pMunLg_otxRGlcaA8YSeOnrpNK4xB5fo3LsUfE-_olqBs3Ggxge68OEnBE3BaXoG6sdrs0RIdNGPjx_IewN9xI_bfEi-L87v5svJ1c3F5fz0agKCl2nS6QY4msZow6q6lgUvu1nJSkAhtDACdVEblLJQZYX57KZiiAoYZzMjeCeLQ_Jpo7sO_mHEmNrBRoV9Dw79GNuC1RWrKjETGZ1uUBV8jAFNuw52gPDUcta-2NBubGi3NuSF46322A2o3_B_f8_A5w2QF9t7PwaXT_2f2l_eUJVX</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Wu, Ning</creator><creator>Liu, Yingguang</creator><creator>Wang, Shuo</creator><creator>Xing, Zhibo</creator><creator>Tang, Guihua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3281-1855</orcidid><orcidid>https://orcid.org/0000-0002-7881-2573</orcidid></search><sort><creationdate>20240814</creationdate><title>Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux</title><author>Wu, Ning ; Liu, Yingguang ; Wang, Shuo ; Xing, Zhibo ; Tang, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-bd9a1ef9fdf06884315b7505ae22d2f2ed38fe443c56e320960eeca0107f21b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ning</creatorcontrib><creatorcontrib>Liu, Yingguang</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Xing, Zhibo</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ning</au><au>Liu, Yingguang</au><au>Wang, Shuo</au><au>Xing, Zhibo</au><au>Tang, Guihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-14</date><risdate>2024</risdate><volume>16</volume><issue>32</issue><spage>42660</spage><epage>42673</epage><pages>42660-42673</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high thermal conductivity both within and beyond the plane, effectively addresses this challenge. This study investigated a 3D hybrid structure composed of graphene and boron nitride nanotubes (GR-BNNTs) using non-equilibrium molecular dynamics simulations. This approach allowed the examination of the formation mechanisms and key factors influencing thermal rectification (TR) in these materials. Our findings reveal a novel mechanism for independently regulating forward and backward heat fluxes in GR-BNNTs. By manipulating the thermal properties of the BNNTs and the graphene layer, the TR ratio can be controlled flexibly. Additionally, we identify specific strategies for independently adjusting the heat flux, such as altering the intercolumn distance of BNNTs, which impacts the backward flux merely, while applying strain to affect the forward flux merely. This research introduces a novel concept of independent regulation of forward and backward heat fluxes, providing significant insights into phonon thermal transport in 3D hybrid structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39078264</pmid><doi>10.1021/acsami.4c09390</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3281-1855</orcidid><orcidid>https://orcid.org/0000-0002-7881-2573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-08, Vol.16 (32), p.42660-42673
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3086066272
source American Chemical Society Journals
subjects Functional Nanostructured Materials (including low-D carbon)
title Thermal Rectification in Graphene–Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Rectification%20in%20Graphene%E2%80%93Boron%20Nitride%20Nanotube%20Hybrid%20Structures:%20An%20Independent%20Control%20Mechanism%20for%20Forward%20and%20Backward%20Heat%20Flux&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Ning&rft.date=2024-08-14&rft.volume=16&rft.issue=32&rft.spage=42660&rft.epage=42673&rft.pages=42660-42673&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09390&rft_dat=%3Cproquest_cross%3E3086066272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086066272&rft_id=info:pmid/39078264&rfr_iscdi=true