Automated detection of tonic seizures using wearable movement sensor and artificial neural network

Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsia (Copenhagen) 2024-09, Vol.65 (9), p.e170-e174
Hauptverfasser: Larsen, Sidsel Armand, Johansen, Daniel Højrup, Beniczky, Sándor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e174
container_issue 9
container_start_page e170
container_title Epilepsia (Copenhagen)
container_volume 65
creator Larsen, Sidsel Armand
Johansen, Daniel Højrup
Beniczky, Sándor
description Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.
doi_str_mv 10.1111/epi.18077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086062923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</originalsourceid><addsrcrecordid>eNp10LtOHDEUBmArCoLlUuQFIktpQjGsLztjT4kQASQkUoTa8uVMZDJjb2xPVuTpMexCgcRpzik-_Tr6EfpCyRmts4S1P6OSCPEJLWjLZENpJz6jBSGUN30ryQE6zPmBECI6wffRAe_rRVbtApnzucRJF3DYQQFbfAw4DrjE4C3O4P_PCTKesw-_8QZ00mYEPMV_MEEoFYQcE9bBYZ2KH7z1esQB5vSyyiamP8dob9BjhpPdPkL3Py5_XVw3t3dXNxfnt41lQopG8vo6ET0zfLCOGUmoZsQa23IutTNGdpIR02tnjdODaQfTt9roXgvHwRp-hL5vc9cp_p0hFzX5bGEcdYA4Z8WJ7EjHesYr_faOPsQ5hfqd4pTxrlutGK3qdKtsijknGNQ6-UmnR0WJei5e1eLVS_HVft0lzmYC9yZfm65guQUbP8Ljx0nq8ufNNvIJb9eOpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123664421</pqid></control><display><type>article</type><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</creator><creatorcontrib>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</creatorcontrib><description>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</description><identifier>ISSN: 0013-9580</identifier><identifier>ISSN: 1528-1167</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/epi.18077</identifier><identifier>PMID: 39076045</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accelerometry - instrumentation ; Accelerometry - methods ; Adolescent ; Adult ; artificial intelligence ; automated seizure detection ; Automation ; Child ; Child, Preschool ; Clinical trials ; Electroencephalography - instrumentation ; Electroencephalography - methods ; Female ; Humans ; Latency ; Male ; Middle Aged ; Movement - physiology ; Neural networks ; Neural Networks, Computer ; Prospective Studies ; Seizures ; Seizures - diagnosis ; Seizures - physiopathology ; tonic seizures ; Wearable Electronic Devices ; wristband sensor ; Young Adult</subject><ispartof>Epilepsia (Copenhagen), 2024-09, Vol.65 (9), p.e170-e174</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.</rights><rights>2024 The Author(s). Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</cites><orcidid>0000-0002-6035-6581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fepi.18077$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fepi.18077$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39076045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larsen, Sidsel Armand</creatorcontrib><creatorcontrib>Johansen, Daniel Højrup</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</description><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - methods</subject><subject>Adolescent</subject><subject>Adult</subject><subject>artificial intelligence</subject><subject>automated seizure detection</subject><subject>Automation</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Clinical trials</subject><subject>Electroencephalography - instrumentation</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Latency</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Prospective Studies</subject><subject>Seizures</subject><subject>Seizures - diagnosis</subject><subject>Seizures - physiopathology</subject><subject>tonic seizures</subject><subject>Wearable Electronic Devices</subject><subject>wristband sensor</subject><subject>Young Adult</subject><issn>0013-9580</issn><issn>1528-1167</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10LtOHDEUBmArCoLlUuQFIktpQjGsLztjT4kQASQkUoTa8uVMZDJjb2xPVuTpMexCgcRpzik-_Tr6EfpCyRmts4S1P6OSCPEJLWjLZENpJz6jBSGUN30ryQE6zPmBECI6wffRAe_rRVbtApnzucRJF3DYQQFbfAw4DrjE4C3O4P_PCTKesw-_8QZ00mYEPMV_MEEoFYQcE9bBYZ2KH7z1esQB5vSyyiamP8dob9BjhpPdPkL3Py5_XVw3t3dXNxfnt41lQopG8vo6ET0zfLCOGUmoZsQa23IutTNGdpIR02tnjdODaQfTt9roXgvHwRp-hL5vc9cp_p0hFzX5bGEcdYA4Z8WJ7EjHesYr_faOPsQ5hfqd4pTxrlutGK3qdKtsijknGNQ6-UmnR0WJei5e1eLVS_HVft0lzmYC9yZfm65guQUbP8Ljx0nq8ufNNvIJb9eOpg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Larsen, Sidsel Armand</creator><creator>Johansen, Daniel Højrup</creator><creator>Beniczky, Sándor</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6035-6581</orcidid></search><sort><creationdate>202409</creationdate><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><author>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - methods</topic><topic>Adolescent</topic><topic>Adult</topic><topic>artificial intelligence</topic><topic>automated seizure detection</topic><topic>Automation</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Clinical trials</topic><topic>Electroencephalography - instrumentation</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Latency</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Prospective Studies</topic><topic>Seizures</topic><topic>Seizures - diagnosis</topic><topic>Seizures - physiopathology</topic><topic>tonic seizures</topic><topic>Wearable Electronic Devices</topic><topic>wristband sensor</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, Sidsel Armand</creatorcontrib><creatorcontrib>Johansen, Daniel Højrup</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, Sidsel Armand</au><au>Johansen, Daniel Højrup</au><au>Beniczky, Sándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2024-09</date><risdate>2024</risdate><volume>65</volume><issue>9</issue><spage>e170</spage><epage>e174</epage><pages>e170-e174</pages><issn>0013-9580</issn><issn>1528-1167</issn><eissn>1528-1167</eissn><abstract>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39076045</pmid><doi>10.1111/epi.18077</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6035-6581</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9580
ispartof Epilepsia (Copenhagen), 2024-09, Vol.65 (9), p.e170-e174
issn 0013-9580
1528-1167
1528-1167
language eng
recordid cdi_proquest_miscellaneous_3086062923
source MEDLINE; Wiley Journals
subjects Accelerometry - instrumentation
Accelerometry - methods
Adolescent
Adult
artificial intelligence
automated seizure detection
Automation
Child
Child, Preschool
Clinical trials
Electroencephalography - instrumentation
Electroencephalography - methods
Female
Humans
Latency
Male
Middle Aged
Movement - physiology
Neural networks
Neural Networks, Computer
Prospective Studies
Seizures
Seizures - diagnosis
Seizures - physiopathology
tonic seizures
Wearable Electronic Devices
wristband sensor
Young Adult
title Automated detection of tonic seizures using wearable movement sensor and artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20tonic%20seizures%20using%20wearable%20movement%20sensor%20and%20artificial%20neural%20network&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Larsen,%20Sidsel%20Armand&rft.date=2024-09&rft.volume=65&rft.issue=9&rft.spage=e170&rft.epage=e174&rft.pages=e170-e174&rft.issn=0013-9580&rft.eissn=1528-1167&rft_id=info:doi/10.1111/epi.18077&rft_dat=%3Cproquest_cross%3E3086062923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123664421&rft_id=info:pmid/39076045&rfr_iscdi=true