Automated detection of tonic seizures using wearable movement sensor and artificial neural network
Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of...
Gespeichert in:
Veröffentlicht in: | Epilepsia (Copenhagen) 2024-09, Vol.65 (9), p.e170-e174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e174 |
---|---|
container_issue | 9 |
container_start_page | e170 |
container_title | Epilepsia (Copenhagen) |
container_volume | 65 |
creator | Larsen, Sidsel Armand Johansen, Daniel Højrup Beniczky, Sándor |
description | Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm. |
doi_str_mv | 10.1111/epi.18077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086062923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</originalsourceid><addsrcrecordid>eNp10LtOHDEUBmArCoLlUuQFIktpQjGsLztjT4kQASQkUoTa8uVMZDJjb2xPVuTpMexCgcRpzik-_Tr6EfpCyRmts4S1P6OSCPEJLWjLZENpJz6jBSGUN30ryQE6zPmBECI6wffRAe_rRVbtApnzucRJF3DYQQFbfAw4DrjE4C3O4P_PCTKesw-_8QZ00mYEPMV_MEEoFYQcE9bBYZ2KH7z1esQB5vSyyiamP8dob9BjhpPdPkL3Py5_XVw3t3dXNxfnt41lQopG8vo6ET0zfLCOGUmoZsQa23IutTNGdpIR02tnjdODaQfTt9roXgvHwRp-hL5vc9cp_p0hFzX5bGEcdYA4Z8WJ7EjHesYr_faOPsQ5hfqd4pTxrlutGK3qdKtsijknGNQ6-UmnR0WJei5e1eLVS_HVft0lzmYC9yZfm65guQUbP8Ljx0nq8ufNNvIJb9eOpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123664421</pqid></control><display><type>article</type><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</creator><creatorcontrib>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</creatorcontrib><description>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</description><identifier>ISSN: 0013-9580</identifier><identifier>ISSN: 1528-1167</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/epi.18077</identifier><identifier>PMID: 39076045</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accelerometry - instrumentation ; Accelerometry - methods ; Adolescent ; Adult ; artificial intelligence ; automated seizure detection ; Automation ; Child ; Child, Preschool ; Clinical trials ; Electroencephalography - instrumentation ; Electroencephalography - methods ; Female ; Humans ; Latency ; Male ; Middle Aged ; Movement - physiology ; Neural networks ; Neural Networks, Computer ; Prospective Studies ; Seizures ; Seizures - diagnosis ; Seizures - physiopathology ; tonic seizures ; Wearable Electronic Devices ; wristband sensor ; Young Adult</subject><ispartof>Epilepsia (Copenhagen), 2024-09, Vol.65 (9), p.e170-e174</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.</rights><rights>2024 The Author(s). Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</cites><orcidid>0000-0002-6035-6581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fepi.18077$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fepi.18077$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39076045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larsen, Sidsel Armand</creatorcontrib><creatorcontrib>Johansen, Daniel Højrup</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</description><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - methods</subject><subject>Adolescent</subject><subject>Adult</subject><subject>artificial intelligence</subject><subject>automated seizure detection</subject><subject>Automation</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Clinical trials</subject><subject>Electroencephalography - instrumentation</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Latency</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Prospective Studies</subject><subject>Seizures</subject><subject>Seizures - diagnosis</subject><subject>Seizures - physiopathology</subject><subject>tonic seizures</subject><subject>Wearable Electronic Devices</subject><subject>wristband sensor</subject><subject>Young Adult</subject><issn>0013-9580</issn><issn>1528-1167</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10LtOHDEUBmArCoLlUuQFIktpQjGsLztjT4kQASQkUoTa8uVMZDJjb2xPVuTpMexCgcRpzik-_Tr6EfpCyRmts4S1P6OSCPEJLWjLZENpJz6jBSGUN30ryQE6zPmBECI6wffRAe_rRVbtApnzucRJF3DYQQFbfAw4DrjE4C3O4P_PCTKesw-_8QZ00mYEPMV_MEEoFYQcE9bBYZ2KH7z1esQB5vSyyiamP8dob9BjhpPdPkL3Py5_XVw3t3dXNxfnt41lQopG8vo6ET0zfLCOGUmoZsQa23IutTNGdpIR02tnjdODaQfTt9roXgvHwRp-hL5vc9cp_p0hFzX5bGEcdYA4Z8WJ7EjHesYr_faOPsQ5hfqd4pTxrlutGK3qdKtsijknGNQ6-UmnR0WJei5e1eLVS_HVft0lzmYC9yZfm65guQUbP8Ljx0nq8ufNNvIJb9eOpg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Larsen, Sidsel Armand</creator><creator>Johansen, Daniel Højrup</creator><creator>Beniczky, Sándor</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6035-6581</orcidid></search><sort><creationdate>202409</creationdate><title>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</title><author>Larsen, Sidsel Armand ; Johansen, Daniel Højrup ; Beniczky, Sándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2787-831520792b3fcd2b801a20cbc5338adbb86820b9adcbdafb5fb95aba9a7d3ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - methods</topic><topic>Adolescent</topic><topic>Adult</topic><topic>artificial intelligence</topic><topic>automated seizure detection</topic><topic>Automation</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Clinical trials</topic><topic>Electroencephalography - instrumentation</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Latency</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Prospective Studies</topic><topic>Seizures</topic><topic>Seizures - diagnosis</topic><topic>Seizures - physiopathology</topic><topic>tonic seizures</topic><topic>Wearable Electronic Devices</topic><topic>wristband sensor</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, Sidsel Armand</creatorcontrib><creatorcontrib>Johansen, Daniel Højrup</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, Sidsel Armand</au><au>Johansen, Daniel Højrup</au><au>Beniczky, Sándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of tonic seizures using wearable movement sensor and artificial neural network</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2024-09</date><risdate>2024</risdate><volume>65</volume><issue>9</issue><spage>e170</spage><epage>e174</epage><pages>e170-e174</pages><issn>0013-9580</issn><issn>1528-1167</issn><eissn>1528-1167</eissn><abstract>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large‐scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39076045</pmid><doi>10.1111/epi.18077</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6035-6581</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-9580 |
ispartof | Epilepsia (Copenhagen), 2024-09, Vol.65 (9), p.e170-e174 |
issn | 0013-9580 1528-1167 1528-1167 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086062923 |
source | MEDLINE; Wiley Journals |
subjects | Accelerometry - instrumentation Accelerometry - methods Adolescent Adult artificial intelligence automated seizure detection Automation Child Child, Preschool Clinical trials Electroencephalography - instrumentation Electroencephalography - methods Female Humans Latency Male Middle Aged Movement - physiology Neural networks Neural Networks, Computer Prospective Studies Seizures Seizures - diagnosis Seizures - physiopathology tonic seizures Wearable Electronic Devices wristband sensor Young Adult |
title | Automated detection of tonic seizures using wearable movement sensor and artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20tonic%20seizures%20using%20wearable%20movement%20sensor%20and%20artificial%20neural%20network&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Larsen,%20Sidsel%20Armand&rft.date=2024-09&rft.volume=65&rft.issue=9&rft.spage=e170&rft.epage=e174&rft.pages=e170-e174&rft.issn=0013-9580&rft.eissn=1528-1167&rft_id=info:doi/10.1111/epi.18077&rft_dat=%3Cproquest_cross%3E3086062923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123664421&rft_id=info:pmid/39076045&rfr_iscdi=true |