Host circuit engagement of human cortical organoids transplanted in rodents
Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcom...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2024-12, Vol.19 (12), p.3542-3567 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3567 |
---|---|
container_issue | 12 |
container_start_page | 3542 |
container_title | Nature protocols |
container_volume | 19 |
creator | Kelley, Kevin W. Revah, Omer Gore, Felicity Kaganovsky, Konstantin Chen, Xiaoyu Deisseroth, Karl Pașca, Sergiu P. |
description | Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.
Key points
The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches.
Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons.
The transplantation of human cortical organoid |
doi_str_mv | 10.1038/s41596-024-01029-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138993022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EYnn9AAWyREMTGL_iuEQrXgKJBmrLcZwlaGMvdlLw93g3C0gUVB7JZ-7MHIROCVwSYNVV4kSosgDKCyBAVcF30AGRAgoqldrd1LygpFIzdJjSOwCXrJT7aMYUSMGgOkCP9yEN2HbRjt2AnV-YheudH3Bo8dvYG49tiENnzRKHuDA-dE3CQzQ-rZbGD67BnccxNLklHaO91iyTO9m-R-j19uZlfl88Pd89zK-fCstoORQ1VEQYwpkAA0JZUA0zgrQlI1IJweuWG5A1aUnlDKHWtsJBXVoiW1Ea69gRuphyVzF8jC4Nuu-Sdcu8kAtj0vmwEkoqKc_o-R_0PYzR5-00I6xSigGlmaITZWNIKbpWr2LXm_ipCei1aj2p1lm13qjW6-izbfRY9675afl2mwE2ASl_-YWLv7P_if0CibiI5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138993022</pqid></control><display><type>article</type><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</creator><creatorcontrib>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</creatorcontrib><description>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.
Key points
The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches.
Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons.
The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</description><identifier>ISSN: 1754-2189</identifier><identifier>ISSN: 1750-2799</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-024-01029-4</identifier><identifier>PMID: 39075308</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/767 ; 631/378/368/2430 ; Activity patterns ; Allografts ; Analytical Chemistry ; Animal behavior ; Animal models ; Animals ; Animals, Newborn ; Biological Techniques ; Biomedical and Life Sciences ; Brain ; Calcium (extracellular) ; Calcium imaging ; Cell Differentiation ; Cerebral cortex ; Circuits ; Computational Biology/Bioinformatics ; Developmental stages ; Electrophysiology ; Experiments ; Functional integration ; Functional magnetic resonance imaging ; Functional morphology ; Genetic code ; Genetic engineering ; Humans ; Image reconstruction ; Induced Pluripotent Stem Cells - cytology ; Life Sciences ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Maturation ; Microarrays ; Microenvironments ; Neonates ; Neural networks ; Neural stem cells ; Neuroimaging ; Neuronal-glial interactions ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurosciences ; Optogenetics - methods ; Organic Chemistry ; Organoids ; Organoids - cytology ; Organoids - transplantation ; Phenotypes ; Physiology ; Pluripotency ; Protocol ; Rats ; Rodents ; Sensory integration ; Somatosensory cortex ; Somatosensory Cortex - cytology ; Somatosensory Cortex - physiology ; Stem cells ; Tissues ; Transcriptomics ; Transplantation</subject><ispartof>Nature protocols, 2024-12, Vol.19 (12), p.3542-3567</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</cites><orcidid>0000-0002-3216-3248 ; 0000-0003-4009-8156 ; 0000-0001-9440-3967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-024-01029-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-024-01029-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39075308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, Kevin W.</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Gore, Felicity</creatorcontrib><creatorcontrib>Kaganovsky, Konstantin</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.
Key points
The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches.
Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons.
The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</description><subject>631/1647/767</subject><subject>631/378/368/2430</subject><subject>Activity patterns</subject><subject>Allografts</subject><subject>Analytical Chemistry</subject><subject>Animal behavior</subject><subject>Animal models</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Calcium (extracellular)</subject><subject>Calcium imaging</subject><subject>Cell Differentiation</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Computational Biology/Bioinformatics</subject><subject>Developmental stages</subject><subject>Electrophysiology</subject><subject>Experiments</subject><subject>Functional integration</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional morphology</subject><subject>Genetic code</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Maturation</subject><subject>Microarrays</subject><subject>Microenvironments</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Neuroimaging</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Optogenetics - methods</subject><subject>Organic Chemistry</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Organoids - transplantation</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Pluripotency</subject><subject>Protocol</subject><subject>Rats</subject><subject>Rodents</subject><subject>Sensory integration</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - cytology</subject><subject>Somatosensory Cortex - physiology</subject><subject>Stem cells</subject><subject>Tissues</subject><subject>Transcriptomics</subject><subject>Transplantation</subject><issn>1754-2189</issn><issn>1750-2799</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOxDAQRS0EYnn9AAWyREMTGL_iuEQrXgKJBmrLcZwlaGMvdlLw93g3C0gUVB7JZ-7MHIROCVwSYNVV4kSosgDKCyBAVcF30AGRAgoqldrd1LygpFIzdJjSOwCXrJT7aMYUSMGgOkCP9yEN2HbRjt2AnV-YheudH3Bo8dvYG49tiENnzRKHuDA-dE3CQzQ-rZbGD67BnccxNLklHaO91iyTO9m-R-j19uZlfl88Pd89zK-fCstoORQ1VEQYwpkAA0JZUA0zgrQlI1IJweuWG5A1aUnlDKHWtsJBXVoiW1Ea69gRuphyVzF8jC4Nuu-Sdcu8kAtj0vmwEkoqKc_o-R_0PYzR5-00I6xSigGlmaITZWNIKbpWr2LXm_ipCei1aj2p1lm13qjW6-izbfRY9675afl2mwE2ASl_-YWLv7P_if0CibiI5g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Kelley, Kevin W.</creator><creator>Revah, Omer</creator><creator>Gore, Felicity</creator><creator>Kaganovsky, Konstantin</creator><creator>Chen, Xiaoyu</creator><creator>Deisseroth, Karl</creator><creator>Pașca, Sergiu P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3216-3248</orcidid><orcidid>https://orcid.org/0000-0003-4009-8156</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid></search><sort><creationdate>20241201</creationdate><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><author>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/767</topic><topic>631/378/368/2430</topic><topic>Activity patterns</topic><topic>Allografts</topic><topic>Analytical Chemistry</topic><topic>Animal behavior</topic><topic>Animal models</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Calcium (extracellular)</topic><topic>Calcium imaging</topic><topic>Cell Differentiation</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Computational Biology/Bioinformatics</topic><topic>Developmental stages</topic><topic>Electrophysiology</topic><topic>Experiments</topic><topic>Functional integration</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional morphology</topic><topic>Genetic code</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Maturation</topic><topic>Microarrays</topic><topic>Microenvironments</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Neuroimaging</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Optogenetics - methods</topic><topic>Organic Chemistry</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Organoids - transplantation</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Pluripotency</topic><topic>Protocol</topic><topic>Rats</topic><topic>Rodents</topic><topic>Sensory integration</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - cytology</topic><topic>Somatosensory Cortex - physiology</topic><topic>Stem cells</topic><topic>Tissues</topic><topic>Transcriptomics</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, Kevin W.</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Gore, Felicity</creatorcontrib><creatorcontrib>Kaganovsky, Konstantin</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelley, Kevin W.</au><au>Revah, Omer</au><au>Gore, Felicity</au><au>Kaganovsky, Konstantin</au><au>Chen, Xiaoyu</au><au>Deisseroth, Karl</au><au>Pașca, Sergiu P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host circuit engagement of human cortical organoids transplanted in rodents</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>3542</spage><epage>3567</epage><pages>3542-3567</pages><issn>1754-2189</issn><issn>1750-2799</issn><eissn>1750-2799</eissn><abstract>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.
Key points
The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches.
Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons.
The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39075308</pmid><doi>10.1038/s41596-024-01029-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3216-3248</orcidid><orcidid>https://orcid.org/0000-0003-4009-8156</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2024-12, Vol.19 (12), p.3542-3567 |
issn | 1754-2189 1750-2799 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086062724 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/1647/767 631/378/368/2430 Activity patterns Allografts Analytical Chemistry Animal behavior Animal models Animals Animals, Newborn Biological Techniques Biomedical and Life Sciences Brain Calcium (extracellular) Calcium imaging Cell Differentiation Cerebral cortex Circuits Computational Biology/Bioinformatics Developmental stages Electrophysiology Experiments Functional integration Functional magnetic resonance imaging Functional morphology Genetic code Genetic engineering Humans Image reconstruction Induced Pluripotent Stem Cells - cytology Life Sciences Magnetic resonance imaging Magnetic Resonance Imaging - methods Maturation Microarrays Microenvironments Neonates Neural networks Neural stem cells Neuroimaging Neuronal-glial interactions Neurons Neurons - cytology Neurons - physiology Neurosciences Optogenetics - methods Organic Chemistry Organoids Organoids - cytology Organoids - transplantation Phenotypes Physiology Pluripotency Protocol Rats Rodents Sensory integration Somatosensory cortex Somatosensory Cortex - cytology Somatosensory Cortex - physiology Stem cells Tissues Transcriptomics Transplantation |
title | Host circuit engagement of human cortical organoids transplanted in rodents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20circuit%20engagement%20of%20human%20cortical%20organoids%20transplanted%20in%20rodents&rft.jtitle=Nature%20protocols&rft.au=Kelley,%20Kevin%20W.&rft.date=2024-12-01&rft.volume=19&rft.issue=12&rft.spage=3542&rft.epage=3567&rft.pages=3542-3567&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-024-01029-4&rft_dat=%3Cproquest_cross%3E3138993022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138993022&rft_id=info:pmid/39075308&rfr_iscdi=true |