Host circuit engagement of human cortical organoids transplanted in rodents

Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2024-12, Vol.19 (12), p.3542-3567
Hauptverfasser: Kelley, Kevin W., Revah, Omer, Gore, Felicity, Kaganovsky, Konstantin, Chen, Xiaoyu, Deisseroth, Karl, Pașca, Sergiu P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3567
container_issue 12
container_start_page 3542
container_title Nature protocols
container_volume 19
creator Kelley, Kevin W.
Revah, Omer
Gore, Felicity
Kaganovsky, Konstantin
Chen, Xiaoyu
Deisseroth, Karl
Pașca, Sergiu P.
description Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. Key points The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches. Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons. The transplantation of human cortical organoid
doi_str_mv 10.1038/s41596-024-01029-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138993022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EYnn9AAWyREMTGL_iuEQrXgKJBmrLcZwlaGMvdlLw93g3C0gUVB7JZ-7MHIROCVwSYNVV4kSosgDKCyBAVcF30AGRAgoqldrd1LygpFIzdJjSOwCXrJT7aMYUSMGgOkCP9yEN2HbRjt2AnV-YheudH3Bo8dvYG49tiENnzRKHuDA-dE3CQzQ-rZbGD67BnccxNLklHaO91iyTO9m-R-j19uZlfl88Pd89zK-fCstoORQ1VEQYwpkAA0JZUA0zgrQlI1IJweuWG5A1aUnlDKHWtsJBXVoiW1Ea69gRuphyVzF8jC4Nuu-Sdcu8kAtj0vmwEkoqKc_o-R_0PYzR5-00I6xSigGlmaITZWNIKbpWr2LXm_ipCei1aj2p1lm13qjW6-izbfRY9675afl2mwE2ASl_-YWLv7P_if0CibiI5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138993022</pqid></control><display><type>article</type><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</creator><creatorcontrib>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</creatorcontrib><description>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. Key points The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches. Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</description><identifier>ISSN: 1754-2189</identifier><identifier>ISSN: 1750-2799</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-024-01029-4</identifier><identifier>PMID: 39075308</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/767 ; 631/378/368/2430 ; Activity patterns ; Allografts ; Analytical Chemistry ; Animal behavior ; Animal models ; Animals ; Animals, Newborn ; Biological Techniques ; Biomedical and Life Sciences ; Brain ; Calcium (extracellular) ; Calcium imaging ; Cell Differentiation ; Cerebral cortex ; Circuits ; Computational Biology/Bioinformatics ; Developmental stages ; Electrophysiology ; Experiments ; Functional integration ; Functional magnetic resonance imaging ; Functional morphology ; Genetic code ; Genetic engineering ; Humans ; Image reconstruction ; Induced Pluripotent Stem Cells - cytology ; Life Sciences ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Maturation ; Microarrays ; Microenvironments ; Neonates ; Neural networks ; Neural stem cells ; Neuroimaging ; Neuronal-glial interactions ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurosciences ; Optogenetics - methods ; Organic Chemistry ; Organoids ; Organoids - cytology ; Organoids - transplantation ; Phenotypes ; Physiology ; Pluripotency ; Protocol ; Rats ; Rodents ; Sensory integration ; Somatosensory cortex ; Somatosensory Cortex - cytology ; Somatosensory Cortex - physiology ; Stem cells ; Tissues ; Transcriptomics ; Transplantation</subject><ispartof>Nature protocols, 2024-12, Vol.19 (12), p.3542-3567</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</cites><orcidid>0000-0002-3216-3248 ; 0000-0003-4009-8156 ; 0000-0001-9440-3967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-024-01029-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-024-01029-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39075308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, Kevin W.</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Gore, Felicity</creatorcontrib><creatorcontrib>Kaganovsky, Konstantin</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. Key points The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches. Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</description><subject>631/1647/767</subject><subject>631/378/368/2430</subject><subject>Activity patterns</subject><subject>Allografts</subject><subject>Analytical Chemistry</subject><subject>Animal behavior</subject><subject>Animal models</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Calcium (extracellular)</subject><subject>Calcium imaging</subject><subject>Cell Differentiation</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Computational Biology/Bioinformatics</subject><subject>Developmental stages</subject><subject>Electrophysiology</subject><subject>Experiments</subject><subject>Functional integration</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional morphology</subject><subject>Genetic code</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Maturation</subject><subject>Microarrays</subject><subject>Microenvironments</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Neuroimaging</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Optogenetics - methods</subject><subject>Organic Chemistry</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Organoids - transplantation</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Pluripotency</subject><subject>Protocol</subject><subject>Rats</subject><subject>Rodents</subject><subject>Sensory integration</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - cytology</subject><subject>Somatosensory Cortex - physiology</subject><subject>Stem cells</subject><subject>Tissues</subject><subject>Transcriptomics</subject><subject>Transplantation</subject><issn>1754-2189</issn><issn>1750-2799</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOxDAQRS0EYnn9AAWyREMTGL_iuEQrXgKJBmrLcZwlaGMvdlLw93g3C0gUVB7JZ-7MHIROCVwSYNVV4kSosgDKCyBAVcF30AGRAgoqldrd1LygpFIzdJjSOwCXrJT7aMYUSMGgOkCP9yEN2HbRjt2AnV-YheudH3Bo8dvYG49tiENnzRKHuDA-dE3CQzQ-rZbGD67BnccxNLklHaO91iyTO9m-R-j19uZlfl88Pd89zK-fCstoORQ1VEQYwpkAA0JZUA0zgrQlI1IJweuWG5A1aUnlDKHWtsJBXVoiW1Ea69gRuphyVzF8jC4Nuu-Sdcu8kAtj0vmwEkoqKc_o-R_0PYzR5-00I6xSigGlmaITZWNIKbpWr2LXm_ipCei1aj2p1lm13qjW6-izbfRY9675afl2mwE2ASl_-YWLv7P_if0CibiI5g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Kelley, Kevin W.</creator><creator>Revah, Omer</creator><creator>Gore, Felicity</creator><creator>Kaganovsky, Konstantin</creator><creator>Chen, Xiaoyu</creator><creator>Deisseroth, Karl</creator><creator>Pașca, Sergiu P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3216-3248</orcidid><orcidid>https://orcid.org/0000-0003-4009-8156</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid></search><sort><creationdate>20241201</creationdate><title>Host circuit engagement of human cortical organoids transplanted in rodents</title><author>Kelley, Kevin W. ; Revah, Omer ; Gore, Felicity ; Kaganovsky, Konstantin ; Chen, Xiaoyu ; Deisseroth, Karl ; Pașca, Sergiu P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b0815a14350a059c09d3a51f63179554bf4a07b1f18ea12ccf5e0b6c17f56ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/767</topic><topic>631/378/368/2430</topic><topic>Activity patterns</topic><topic>Allografts</topic><topic>Analytical Chemistry</topic><topic>Animal behavior</topic><topic>Animal models</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Calcium (extracellular)</topic><topic>Calcium imaging</topic><topic>Cell Differentiation</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Computational Biology/Bioinformatics</topic><topic>Developmental stages</topic><topic>Electrophysiology</topic><topic>Experiments</topic><topic>Functional integration</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional morphology</topic><topic>Genetic code</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Maturation</topic><topic>Microarrays</topic><topic>Microenvironments</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Neuroimaging</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Optogenetics - methods</topic><topic>Organic Chemistry</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Organoids - transplantation</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Pluripotency</topic><topic>Protocol</topic><topic>Rats</topic><topic>Rodents</topic><topic>Sensory integration</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - cytology</topic><topic>Somatosensory Cortex - physiology</topic><topic>Stem cells</topic><topic>Tissues</topic><topic>Transcriptomics</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, Kevin W.</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Gore, Felicity</creatorcontrib><creatorcontrib>Kaganovsky, Konstantin</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelley, Kevin W.</au><au>Revah, Omer</au><au>Gore, Felicity</au><au>Kaganovsky, Konstantin</au><au>Chen, Xiaoyu</au><au>Deisseroth, Karl</au><au>Pașca, Sergiu P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host circuit engagement of human cortical organoids transplanted in rodents</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>3542</spage><epage>3567</epage><pages>3542-3567</pages><issn>1754-2189</issn><issn>1750-2799</issn><eissn>1750-2799</eissn><abstract>Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. Key points The protocol involves surgical implantation of human cortical organoids in the cerebral cortex of rat pups. Organoid growth is monitored by using MRI, whereas their functional integration in the host neural circuitry is carried out by using behavioral, electrophysiological and optogenetic approaches. Transplanted organoids enable multimodal genomic measurements from millions of cells, facilitating characterization of human–human and human–rodent cellular interactions, including neural circuit activity patterns and relationships between glia and neurons. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39075308</pmid><doi>10.1038/s41596-024-01029-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3216-3248</orcidid><orcidid>https://orcid.org/0000-0003-4009-8156</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2024-12, Vol.19 (12), p.3542-3567
issn 1754-2189
1750-2799
1750-2799
language eng
recordid cdi_proquest_miscellaneous_3086062724
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/1647/767
631/378/368/2430
Activity patterns
Allografts
Analytical Chemistry
Animal behavior
Animal models
Animals
Animals, Newborn
Biological Techniques
Biomedical and Life Sciences
Brain
Calcium (extracellular)
Calcium imaging
Cell Differentiation
Cerebral cortex
Circuits
Computational Biology/Bioinformatics
Developmental stages
Electrophysiology
Experiments
Functional integration
Functional magnetic resonance imaging
Functional morphology
Genetic code
Genetic engineering
Humans
Image reconstruction
Induced Pluripotent Stem Cells - cytology
Life Sciences
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Maturation
Microarrays
Microenvironments
Neonates
Neural networks
Neural stem cells
Neuroimaging
Neuronal-glial interactions
Neurons
Neurons - cytology
Neurons - physiology
Neurosciences
Optogenetics - methods
Organic Chemistry
Organoids
Organoids - cytology
Organoids - transplantation
Phenotypes
Physiology
Pluripotency
Protocol
Rats
Rodents
Sensory integration
Somatosensory cortex
Somatosensory Cortex - cytology
Somatosensory Cortex - physiology
Stem cells
Tissues
Transcriptomics
Transplantation
title Host circuit engagement of human cortical organoids transplanted in rodents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20circuit%20engagement%20of%20human%20cortical%20organoids%20transplanted%20in%20rodents&rft.jtitle=Nature%20protocols&rft.au=Kelley,%20Kevin%20W.&rft.date=2024-12-01&rft.volume=19&rft.issue=12&rft.spage=3542&rft.epage=3567&rft.pages=3542-3567&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-024-01029-4&rft_dat=%3Cproquest_cross%3E3138993022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138993022&rft_id=info:pmid/39075308&rfr_iscdi=true