Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions

Artificial intelligence (AI) is emerging as a transformative technology in healthcare, including endodontics. A gap in knowledge exists in understanding AI's applications and limitations among endodontic experts. This comprehensive review aims to (A) elaborate on technical and ethical aspects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International endodontic journal 2024-11, Vol.57 (11), p.1566-1595
Hauptverfasser: Mohammad‐Rahimi, Hossein, Sohrabniya, Fatemeh, Ourang, Seyed AmirHossein, Dianat, Omid, Aminoshariae, Anita, Nagendrababu, Venkateshbabu, Dummer, Paul Michael Howell, Duncan, Henry F., Nosrat, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1595
container_issue 11
container_start_page 1566
container_title International endodontic journal
container_volume 57
creator Mohammad‐Rahimi, Hossein
Sohrabniya, Fatemeh
Ourang, Seyed AmirHossein
Dianat, Omid
Aminoshariae, Anita
Nagendrababu, Venkateshbabu
Dummer, Paul Michael Howell
Duncan, Henry F.
Nosrat, Ali
description Artificial intelligence (AI) is emerging as a transformative technology in healthcare, including endodontics. A gap in knowledge exists in understanding AI's applications and limitations among endodontic experts. This comprehensive review aims to (A) elaborate on technical and ethical aspects of using data to implement AI models in endodontics; (B) elaborate on evaluation metrics; (C) review the current applications of AI in endodontics; and (D) review the limitations and barriers to real‐world implementation of AI in the field of endodontics and its future potentials/directions. The article shows that AI techniques have been applied in endodontics for critical tasks such as detection of radiolucent lesions, analysis of root canal morphology, prediction of treatment outcome and post‐operative pain and more. Deep learning models like convolutional neural networks demonstrate high accuracy in these applications. However, challenges remain regarding model interpretability, generalizability, and adoption into clinical practice. When thoughtfully implemented, AI has great potential to aid with diagnostics, treatment planning, clinical interventions, and education in the field of endodontics. However, concerted efforts are still needed to address limitations and to facilitate integration into clinical workflows.
doi_str_mv 10.1111/iej.14128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114823030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2788-58fce036058d1841bc15164b1215f6675d6db0cad3620ab5ce36602abede95093</originalsourceid><addsrcrecordid>eNp1kVFPHCEUhUlTU9etD_6BZpK-2MTRCwws2zdjtWpMfKnPhIE7ls0sMwUmjb_BPy3uun1oIjzAOfnuCeQQckThlJZ15nF1ShvK1Acyo1yKmokl_UhmQBteM6XEPjlIaQUAAjj9RPb5EhZCLmBGns9j9p233vSVDxn73j9isFhEhcENbgjZ2_S9-mGyqcaIo4km-yGcVLb3wdsyZ8axL5dXN51UmH9vXFuUdxh3fu_XPu-ECa7qpjxFrJyPaDf2Z7LXmT7h4ds5Jw9Xl78uruu7-583F-d3tWULpWqhOovAJQjlqGpoa6mgsmkpo6KTciGcdC1Y47hkYFphkUsJzLTocClgyefkeJs7xuHPhCnrtU-2fN0EHKakOSgJkkneFPTrf-hqmGIor9Oc0kYxDmXPybctZeOQUsROj9GvTXzSFPRrQ7o0pDcNFfbLW-LUrtH9I3eVFOBsC_z1PT69n6RvLm-3kS-o_pwK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114823030</pqid></control><display><type>article</type><title>Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohammad‐Rahimi, Hossein ; Sohrabniya, Fatemeh ; Ourang, Seyed AmirHossein ; Dianat, Omid ; Aminoshariae, Anita ; Nagendrababu, Venkateshbabu ; Dummer, Paul Michael Howell ; Duncan, Henry F. ; Nosrat, Ali</creator><creatorcontrib>Mohammad‐Rahimi, Hossein ; Sohrabniya, Fatemeh ; Ourang, Seyed AmirHossein ; Dianat, Omid ; Aminoshariae, Anita ; Nagendrababu, Venkateshbabu ; Dummer, Paul Michael Howell ; Duncan, Henry F. ; Nosrat, Ali</creatorcontrib><description>Artificial intelligence (AI) is emerging as a transformative technology in healthcare, including endodontics. A gap in knowledge exists in understanding AI's applications and limitations among endodontic experts. This comprehensive review aims to (A) elaborate on technical and ethical aspects of using data to implement AI models in endodontics; (B) elaborate on evaluation metrics; (C) review the current applications of AI in endodontics; and (D) review the limitations and barriers to real‐world implementation of AI in the field of endodontics and its future potentials/directions. The article shows that AI techniques have been applied in endodontics for critical tasks such as detection of radiolucent lesions, analysis of root canal morphology, prediction of treatment outcome and post‐operative pain and more. Deep learning models like convolutional neural networks demonstrate high accuracy in these applications. However, challenges remain regarding model interpretability, generalizability, and adoption into clinical practice. When thoughtfully implemented, AI has great potential to aid with diagnostics, treatment planning, clinical interventions, and education in the field of endodontics. However, concerted efforts are still needed to address limitations and to facilitate integration into clinical workflows.</description><identifier>ISSN: 0143-2885</identifier><identifier>ISSN: 1365-2591</identifier><identifier>EISSN: 1365-2591</identifier><identifier>DOI: 10.1111/iej.14128</identifier><identifier>PMID: 39075670</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; Artificial Intelligence - ethics ; clinical application ; data management ; Deep Learning ; Endodontics ; Endodontics - ethics ; Endodontics - methods ; Ethics ; Humans ; model implementation ; Neural networks ; Reviews ; Root canals</subject><ispartof>International endodontic journal, 2024-11, Vol.57 (11), p.1566-1595</ispartof><rights>2024 British Endodontic Society. Published by John Wiley &amp; Sons Ltd</rights><rights>2024 British Endodontic Society. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 International Endodontic Journal. Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2788-58fce036058d1841bc15164b1215f6675d6db0cad3620ab5ce36602abede95093</cites><orcidid>0000-0003-1288-2250 ; 0000-0001-8690-2379 ; 0000-0003-4768-9717 ; 0009-0009-8521-2718 ; 0000-0001-8399-9988 ; 0000-0003-3783-3156 ; 0000-0002-4971-5926 ; 0000-0001-8768-0456 ; 0000-0002-0726-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fiej.14128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fiej.14128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39075670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammad‐Rahimi, Hossein</creatorcontrib><creatorcontrib>Sohrabniya, Fatemeh</creatorcontrib><creatorcontrib>Ourang, Seyed AmirHossein</creatorcontrib><creatorcontrib>Dianat, Omid</creatorcontrib><creatorcontrib>Aminoshariae, Anita</creatorcontrib><creatorcontrib>Nagendrababu, Venkateshbabu</creatorcontrib><creatorcontrib>Dummer, Paul Michael Howell</creatorcontrib><creatorcontrib>Duncan, Henry F.</creatorcontrib><creatorcontrib>Nosrat, Ali</creatorcontrib><title>Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions</title><title>International endodontic journal</title><addtitle>Int Endod J</addtitle><description>Artificial intelligence (AI) is emerging as a transformative technology in healthcare, including endodontics. A gap in knowledge exists in understanding AI's applications and limitations among endodontic experts. This comprehensive review aims to (A) elaborate on technical and ethical aspects of using data to implement AI models in endodontics; (B) elaborate on evaluation metrics; (C) review the current applications of AI in endodontics; and (D) review the limitations and barriers to real‐world implementation of AI in the field of endodontics and its future potentials/directions. The article shows that AI techniques have been applied in endodontics for critical tasks such as detection of radiolucent lesions, analysis of root canal morphology, prediction of treatment outcome and post‐operative pain and more. Deep learning models like convolutional neural networks demonstrate high accuracy in these applications. However, challenges remain regarding model interpretability, generalizability, and adoption into clinical practice. When thoughtfully implemented, AI has great potential to aid with diagnostics, treatment planning, clinical interventions, and education in the field of endodontics. However, concerted efforts are still needed to address limitations and to facilitate integration into clinical workflows.</description><subject>Artificial intelligence</subject><subject>Artificial Intelligence - ethics</subject><subject>clinical application</subject><subject>data management</subject><subject>Deep Learning</subject><subject>Endodontics</subject><subject>Endodontics - ethics</subject><subject>Endodontics - methods</subject><subject>Ethics</subject><subject>Humans</subject><subject>model implementation</subject><subject>Neural networks</subject><subject>Reviews</subject><subject>Root canals</subject><issn>0143-2885</issn><issn>1365-2591</issn><issn>1365-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVFPHCEUhUlTU9etD_6BZpK-2MTRCwws2zdjtWpMfKnPhIE7ls0sMwUmjb_BPy3uun1oIjzAOfnuCeQQckThlJZ15nF1ShvK1Acyo1yKmokl_UhmQBteM6XEPjlIaQUAAjj9RPb5EhZCLmBGns9j9p233vSVDxn73j9isFhEhcENbgjZ2_S9-mGyqcaIo4km-yGcVLb3wdsyZ8axL5dXN51UmH9vXFuUdxh3fu_XPu-ECa7qpjxFrJyPaDf2Z7LXmT7h4ds5Jw9Xl78uruu7-583F-d3tWULpWqhOovAJQjlqGpoa6mgsmkpo6KTciGcdC1Y47hkYFphkUsJzLTocClgyefkeJs7xuHPhCnrtU-2fN0EHKakOSgJkkneFPTrf-hqmGIor9Oc0kYxDmXPybctZeOQUsROj9GvTXzSFPRrQ7o0pDcNFfbLW-LUrtH9I3eVFOBsC_z1PT69n6RvLm-3kS-o_pwK</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Mohammad‐Rahimi, Hossein</creator><creator>Sohrabniya, Fatemeh</creator><creator>Ourang, Seyed AmirHossein</creator><creator>Dianat, Omid</creator><creator>Aminoshariae, Anita</creator><creator>Nagendrababu, Venkateshbabu</creator><creator>Dummer, Paul Michael Howell</creator><creator>Duncan, Henry F.</creator><creator>Nosrat, Ali</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1288-2250</orcidid><orcidid>https://orcid.org/0000-0001-8690-2379</orcidid><orcidid>https://orcid.org/0000-0003-4768-9717</orcidid><orcidid>https://orcid.org/0009-0009-8521-2718</orcidid><orcidid>https://orcid.org/0000-0001-8399-9988</orcidid><orcidid>https://orcid.org/0000-0003-3783-3156</orcidid><orcidid>https://orcid.org/0000-0002-4971-5926</orcidid><orcidid>https://orcid.org/0000-0001-8768-0456</orcidid><orcidid>https://orcid.org/0000-0002-0726-7467</orcidid></search><sort><creationdate>202411</creationdate><title>Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions</title><author>Mohammad‐Rahimi, Hossein ; Sohrabniya, Fatemeh ; Ourang, Seyed AmirHossein ; Dianat, Omid ; Aminoshariae, Anita ; Nagendrababu, Venkateshbabu ; Dummer, Paul Michael Howell ; Duncan, Henry F. ; Nosrat, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2788-58fce036058d1841bc15164b1215f6675d6db0cad3620ab5ce36602abede95093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial Intelligence - ethics</topic><topic>clinical application</topic><topic>data management</topic><topic>Deep Learning</topic><topic>Endodontics</topic><topic>Endodontics - ethics</topic><topic>Endodontics - methods</topic><topic>Ethics</topic><topic>Humans</topic><topic>model implementation</topic><topic>Neural networks</topic><topic>Reviews</topic><topic>Root canals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammad‐Rahimi, Hossein</creatorcontrib><creatorcontrib>Sohrabniya, Fatemeh</creatorcontrib><creatorcontrib>Ourang, Seyed AmirHossein</creatorcontrib><creatorcontrib>Dianat, Omid</creatorcontrib><creatorcontrib>Aminoshariae, Anita</creatorcontrib><creatorcontrib>Nagendrababu, Venkateshbabu</creatorcontrib><creatorcontrib>Dummer, Paul Michael Howell</creatorcontrib><creatorcontrib>Duncan, Henry F.</creatorcontrib><creatorcontrib>Nosrat, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International endodontic journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad‐Rahimi, Hossein</au><au>Sohrabniya, Fatemeh</au><au>Ourang, Seyed AmirHossein</au><au>Dianat, Omid</au><au>Aminoshariae, Anita</au><au>Nagendrababu, Venkateshbabu</au><au>Dummer, Paul Michael Howell</au><au>Duncan, Henry F.</au><au>Nosrat, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions</atitle><jtitle>International endodontic journal</jtitle><addtitle>Int Endod J</addtitle><date>2024-11</date><risdate>2024</risdate><volume>57</volume><issue>11</issue><spage>1566</spage><epage>1595</epage><pages>1566-1595</pages><issn>0143-2885</issn><issn>1365-2591</issn><eissn>1365-2591</eissn><abstract>Artificial intelligence (AI) is emerging as a transformative technology in healthcare, including endodontics. A gap in knowledge exists in understanding AI's applications and limitations among endodontic experts. This comprehensive review aims to (A) elaborate on technical and ethical aspects of using data to implement AI models in endodontics; (B) elaborate on evaluation metrics; (C) review the current applications of AI in endodontics; and (D) review the limitations and barriers to real‐world implementation of AI in the field of endodontics and its future potentials/directions. The article shows that AI techniques have been applied in endodontics for critical tasks such as detection of radiolucent lesions, analysis of root canal morphology, prediction of treatment outcome and post‐operative pain and more. Deep learning models like convolutional neural networks demonstrate high accuracy in these applications. However, challenges remain regarding model interpretability, generalizability, and adoption into clinical practice. When thoughtfully implemented, AI has great potential to aid with diagnostics, treatment planning, clinical interventions, and education in the field of endodontics. However, concerted efforts are still needed to address limitations and to facilitate integration into clinical workflows.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39075670</pmid><doi>10.1111/iej.14128</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-1288-2250</orcidid><orcidid>https://orcid.org/0000-0001-8690-2379</orcidid><orcidid>https://orcid.org/0000-0003-4768-9717</orcidid><orcidid>https://orcid.org/0009-0009-8521-2718</orcidid><orcidid>https://orcid.org/0000-0001-8399-9988</orcidid><orcidid>https://orcid.org/0000-0003-3783-3156</orcidid><orcidid>https://orcid.org/0000-0002-4971-5926</orcidid><orcidid>https://orcid.org/0000-0001-8768-0456</orcidid><orcidid>https://orcid.org/0000-0002-0726-7467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2885
ispartof International endodontic journal, 2024-11, Vol.57 (11), p.1566-1595
issn 0143-2885
1365-2591
1365-2591
language eng
recordid cdi_proquest_miscellaneous_3086062634
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Artificial intelligence
Artificial Intelligence - ethics
clinical application
data management
Deep Learning
Endodontics
Endodontics - ethics
Endodontics - methods
Ethics
Humans
model implementation
Neural networks
Reviews
Root canals
title Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20endodontics:%20Data%20preparation,%20clinical%20applications,%20ethical%20considerations,%20limitations,%20and%20future%20directions&rft.jtitle=International%20endodontic%20journal&rft.au=Mohammad%E2%80%90Rahimi,%20Hossein&rft.date=2024-11&rft.volume=57&rft.issue=11&rft.spage=1566&rft.epage=1595&rft.pages=1566-1595&rft.issn=0143-2885&rft.eissn=1365-2591&rft_id=info:doi/10.1111/iej.14128&rft_dat=%3Cproquest_cross%3E3114823030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114823030&rft_id=info:pmid/39075670&rfr_iscdi=true