High-resolution topographic surveying and change detection with the iPhone LiDAR

This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2024-12, Vol.19 (12), p.3520-3541
Hauptverfasser: Luetzenburg, Gregor, Kroon, Aart, Kjeldsen, Kristian K., Splinter, Kristen D., Bjørk, Anders A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3541
container_issue 12
container_start_page 3520
container_title Nature protocols
container_volume 19
creator Luetzenburg, Gregor
Kroon, Aart
Kjeldsen, Kristian K.
Splinter, Kristen D.
Bjørk, Anders A.
description This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community. Key points This protocol describes the use of iPhone LiDAR to generate high-resolution indoor and outdoor 3D models, providing insights into object size, volume and geometry. The 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared with other 3D surveying methods such as photogrammetry, this method is fast and cost effective and achieves high resolution. It also makes 3D surveying accessible to non-experts. This protocol describes the use of iPhone LiDAR to generate high-resolution 3D models for topographic surveying and to measure their changes over time. The protocol simplifies the use of the iPhone LiDAR sensor, making it accessible to non-experts.
doi_str_mv 10.1038/s41596-024-01024-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086062373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138991985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1f79c60b4d8623cab84dd083e4de2451f790d77c0072e2900b7c7d1f8b0152ae3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMofv8BD1Lw4qU6SdomOYrfsKCInkObzG4ju82atMr-e7O7foAHL5nAPPPO8BByROGMApfnsaClqnJgRQ50-aoNsktFCTkTSm2u_kXOqFQ7ZC_GV4BC8Epskx2uQJScwi55vHOTNg8Y_XTone-y3s_9JNTz1pksDuEdF66bZHVnM9PW3QQziz2aFfrh-jbrW8zcY-s7zEbu6uLpgGyN62nEw6-6T15urp8v7_LRw-395cUoN6ys-pyOhTIVNIWVFeOmbmRhLUiOhUVWlMs2WCEMgGDIFEAjjLB0LBugJauR75PTde48-LcBY69nLhqcTusO_RA1B1lBihY8oSd_0Fc_hC5dpznlUimqZJkotqZM8DEGHOt5cLM6LDQFvfSt1751Mq1XvrVKQ8df0UMzQ_sz8i04AXwNxNRK-sLv7n9iPwEPY4oM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138991985</pqid></control><display><type>article</type><title>High-resolution topographic surveying and change detection with the iPhone LiDAR</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Luetzenburg, Gregor ; Kroon, Aart ; Kjeldsen, Kristian K. ; Splinter, Kristen D. ; Bjørk, Anders A.</creator><creatorcontrib>Luetzenburg, Gregor ; Kroon, Aart ; Kjeldsen, Kristian K. ; Splinter, Kristen D. ; Bjørk, Anders A.</creatorcontrib><description>This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community. Key points This protocol describes the use of iPhone LiDAR to generate high-resolution indoor and outdoor 3D models, providing insights into object size, volume and geometry. The 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared with other 3D surveying methods such as photogrammetry, this method is fast and cost effective and achieves high resolution. It also makes 3D surveying accessible to non-experts. This protocol describes the use of iPhone LiDAR to generate high-resolution 3D models for topographic surveying and to measure their changes over time. The protocol simplifies the use of the iPhone LiDAR sensor, making it accessible to non-experts.</description><identifier>ISSN: 1754-2189</identifier><identifier>ISSN: 1750-2799</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-024-01024-9</identifier><identifier>PMID: 39075310</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 704/106 ; Analytical Chemistry ; Biological Techniques ; Biomedical and Life Sciences ; Cell Phone ; Change detection ; Computational Biology/Bioinformatics ; High resolution ; Imaging, Three-Dimensional - methods ; Lidar ; Life Sciences ; Microarrays ; Organic Chemistry ; Photogrammetry ; Protocol ; Remote Sensing Technology - instrumentation ; Remote Sensing Technology - methods ; Sensors ; Smartphone ; Smartphones ; Surveying ; Three dimensional models ; Time measurement ; Topographic mapping ; Topographic surveys ; Topography</subject><ispartof>Nature protocols, 2024-12, Vol.19 (12), p.3520-3541</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-1f79c60b4d8623cab84dd083e4de2451f790d77c0072e2900b7c7d1f8b0152ae3</cites><orcidid>0000-0001-5443-7572 ; 0000-0002-0082-8444 ; 0000-0002-8557-5131 ; 0000-0002-4919-792X ; 0000-0002-9419-2327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-024-01024-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-024-01024-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39075310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luetzenburg, Gregor</creatorcontrib><creatorcontrib>Kroon, Aart</creatorcontrib><creatorcontrib>Kjeldsen, Kristian K.</creatorcontrib><creatorcontrib>Splinter, Kristen D.</creatorcontrib><creatorcontrib>Bjørk, Anders A.</creatorcontrib><title>High-resolution topographic surveying and change detection with the iPhone LiDAR</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community. Key points This protocol describes the use of iPhone LiDAR to generate high-resolution indoor and outdoor 3D models, providing insights into object size, volume and geometry. The 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared with other 3D surveying methods such as photogrammetry, this method is fast and cost effective and achieves high resolution. It also makes 3D surveying accessible to non-experts. This protocol describes the use of iPhone LiDAR to generate high-resolution 3D models for topographic surveying and to measure their changes over time. The protocol simplifies the use of the iPhone LiDAR sensor, making it accessible to non-experts.</description><subject>639/624</subject><subject>704/106</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Phone</subject><subject>Change detection</subject><subject>Computational Biology/Bioinformatics</subject><subject>High resolution</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lidar</subject><subject>Life Sciences</subject><subject>Microarrays</subject><subject>Organic Chemistry</subject><subject>Photogrammetry</subject><subject>Protocol</subject><subject>Remote Sensing Technology - instrumentation</subject><subject>Remote Sensing Technology - methods</subject><subject>Sensors</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Surveying</subject><subject>Three dimensional models</subject><subject>Time measurement</subject><subject>Topographic mapping</subject><subject>Topographic surveys</subject><subject>Topography</subject><issn>1754-2189</issn><issn>1750-2799</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMofv8BD1Lw4qU6SdomOYrfsKCInkObzG4ju82atMr-e7O7foAHL5nAPPPO8BByROGMApfnsaClqnJgRQ50-aoNsktFCTkTSm2u_kXOqFQ7ZC_GV4BC8Epskx2uQJScwi55vHOTNg8Y_XTone-y3s_9JNTz1pksDuEdF66bZHVnM9PW3QQziz2aFfrh-jbrW8zcY-s7zEbu6uLpgGyN62nEw6-6T15urp8v7_LRw-395cUoN6ys-pyOhTIVNIWVFeOmbmRhLUiOhUVWlMs2WCEMgGDIFEAjjLB0LBugJauR75PTde48-LcBY69nLhqcTusO_RA1B1lBihY8oSd_0Fc_hC5dpznlUimqZJkotqZM8DEGHOt5cLM6LDQFvfSt1751Mq1XvrVKQ8df0UMzQ_sz8i04AXwNxNRK-sLv7n9iPwEPY4oM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Luetzenburg, Gregor</creator><creator>Kroon, Aart</creator><creator>Kjeldsen, Kristian K.</creator><creator>Splinter, Kristen D.</creator><creator>Bjørk, Anders A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5443-7572</orcidid><orcidid>https://orcid.org/0000-0002-0082-8444</orcidid><orcidid>https://orcid.org/0000-0002-8557-5131</orcidid><orcidid>https://orcid.org/0000-0002-4919-792X</orcidid><orcidid>https://orcid.org/0000-0002-9419-2327</orcidid></search><sort><creationdate>20241201</creationdate><title>High-resolution topographic surveying and change detection with the iPhone LiDAR</title><author>Luetzenburg, Gregor ; Kroon, Aart ; Kjeldsen, Kristian K. ; Splinter, Kristen D. ; Bjørk, Anders A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1f79c60b4d8623cab84dd083e4de2451f790d77c0072e2900b7c7d1f8b0152ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624</topic><topic>704/106</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Phone</topic><topic>Change detection</topic><topic>Computational Biology/Bioinformatics</topic><topic>High resolution</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lidar</topic><topic>Life Sciences</topic><topic>Microarrays</topic><topic>Organic Chemistry</topic><topic>Photogrammetry</topic><topic>Protocol</topic><topic>Remote Sensing Technology - instrumentation</topic><topic>Remote Sensing Technology - methods</topic><topic>Sensors</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Surveying</topic><topic>Three dimensional models</topic><topic>Time measurement</topic><topic>Topographic mapping</topic><topic>Topographic surveys</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luetzenburg, Gregor</creatorcontrib><creatorcontrib>Kroon, Aart</creatorcontrib><creatorcontrib>Kjeldsen, Kristian K.</creatorcontrib><creatorcontrib>Splinter, Kristen D.</creatorcontrib><creatorcontrib>Bjørk, Anders A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luetzenburg, Gregor</au><au>Kroon, Aart</au><au>Kjeldsen, Kristian K.</au><au>Splinter, Kristen D.</au><au>Bjørk, Anders A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution topographic surveying and change detection with the iPhone LiDAR</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>3520</spage><epage>3541</epage><pages>3520-3541</pages><issn>1754-2189</issn><issn>1750-2799</issn><eissn>1750-2799</eissn><abstract>This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community. Key points This protocol describes the use of iPhone LiDAR to generate high-resolution indoor and outdoor 3D models, providing insights into object size, volume and geometry. The 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared with other 3D surveying methods such as photogrammetry, this method is fast and cost effective and achieves high resolution. It also makes 3D surveying accessible to non-experts. This protocol describes the use of iPhone LiDAR to generate high-resolution 3D models for topographic surveying and to measure their changes over time. The protocol simplifies the use of the iPhone LiDAR sensor, making it accessible to non-experts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39075310</pmid><doi>10.1038/s41596-024-01024-9</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5443-7572</orcidid><orcidid>https://orcid.org/0000-0002-0082-8444</orcidid><orcidid>https://orcid.org/0000-0002-8557-5131</orcidid><orcidid>https://orcid.org/0000-0002-4919-792X</orcidid><orcidid>https://orcid.org/0000-0002-9419-2327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2024-12, Vol.19 (12), p.3520-3541
issn 1754-2189
1750-2799
1750-2799
language eng
recordid cdi_proquest_miscellaneous_3086062373
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 639/624
704/106
Analytical Chemistry
Biological Techniques
Biomedical and Life Sciences
Cell Phone
Change detection
Computational Biology/Bioinformatics
High resolution
Imaging, Three-Dimensional - methods
Lidar
Life Sciences
Microarrays
Organic Chemistry
Photogrammetry
Protocol
Remote Sensing Technology - instrumentation
Remote Sensing Technology - methods
Sensors
Smartphone
Smartphones
Surveying
Three dimensional models
Time measurement
Topographic mapping
Topographic surveys
Topography
title High-resolution topographic surveying and change detection with the iPhone LiDAR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20topographic%20surveying%20and%20change%20detection%20with%20the%20iPhone%20LiDAR&rft.jtitle=Nature%20protocols&rft.au=Luetzenburg,%20Gregor&rft.date=2024-12-01&rft.volume=19&rft.issue=12&rft.spage=3520&rft.epage=3541&rft.pages=3520-3541&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-024-01024-9&rft_dat=%3Cproquest_cross%3E3138991985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138991985&rft_id=info:pmid/39075310&rfr_iscdi=true