Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold
Abstract Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantage...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-10, Vol.277 (Pt 2), p.134185, Article 134185 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Pt 2 |
container_start_page | 134185 |
container_title | International journal of biological macromolecules |
container_volume | 277 |
creator | Wang, Zhaozhen Zheng, Boyuan Yu, Xiaolu Shi, Yiwan Zhou, Xinting Gao, Botao He, Fupo Tam, Man Seng Wang, Huajun Cheang, Lek Hang Zheng, Xiaofei Wu, Tingting |
description | Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair. |
doi_str_mv | 10.1016/j.ijbiomac.2024.134185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086061512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024049900</els_id><sourcerecordid>3086061512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-368d93715e4f280dd1cc0111b12ba1b49013f78bc62f6981e449a1a047ca1bdd3</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi0EokvhFSofuWTriR3HuVGVtiCtRA_t2XLsyeJVYi-2s1W58eak2i1XTiPNfDOj_yPkAtgaGMjL3drveh8nY9c1q8UauADVvCErUG1XMcb4W7JiIKBSwNkZ-ZDzbunKBtR7csY71grZiRX5c5_iFIsPWxpwTvFgsp1Hk_xvdLSPAWnCLQZMpvgY6JMvP6mhIR5wpPwr3ScfykL6ENPWBG-rU6WT2QbMfp5o9qO3puDl_eaK2jjtY_YFabZmGOLoPpJ3gxkzfjrVc_J4e_Nw_a3a_Lj7fn21qWwtmlJxqVzHW2hQDLVizoG1DAB6qHsDvegY8KFVvZX1IDsFKERnwDDR2mXsHD8nn4939yn-mjEXPflscRxNwDhnzZmSTEID9YLKI2pTzDnhoJeck0nPGph-0a93-lW_ftGvj_qXxYvTj7mf0P1be_W9AF-OAC5JDx6TztZjsOh8Qlu0i_5_P_4CJTicAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086061512</pqid></control><display><type>article</type><title>Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Zhaozhen ; Zheng, Boyuan ; Yu, Xiaolu ; Shi, Yiwan ; Zhou, Xinting ; Gao, Botao ; He, Fupo ; Tam, Man Seng ; Wang, Huajun ; Cheang, Lek Hang ; Zheng, Xiaofei ; Wu, Tingting</creator><creatorcontrib>Wang, Zhaozhen ; Zheng, Boyuan ; Yu, Xiaolu ; Shi, Yiwan ; Zhou, Xinting ; Gao, Botao ; He, Fupo ; Tam, Man Seng ; Wang, Huajun ; Cheang, Lek Hang ; Zheng, Xiaofei ; Wu, Tingting</creatorcontrib><description>Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.134185</identifier><identifier>PMID: 39074694</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D printing ; Magnesium silicate/polylactic acid ; Neuralization ; Osteogenesis ; Vascularization</subject><ispartof>International journal of biological macromolecules, 2024-10, Vol.277 (Pt 2), p.134185, Article 134185</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-368d93715e4f280dd1cc0111b12ba1b49013f78bc62f6981e449a1a047ca1bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.134185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhaozhen</creatorcontrib><creatorcontrib>Zheng, Boyuan</creatorcontrib><creatorcontrib>Yu, Xiaolu</creatorcontrib><creatorcontrib>Shi, Yiwan</creatorcontrib><creatorcontrib>Zhou, Xinting</creatorcontrib><creatorcontrib>Gao, Botao</creatorcontrib><creatorcontrib>He, Fupo</creatorcontrib><creatorcontrib>Tam, Man Seng</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Cheang, Lek Hang</creatorcontrib><creatorcontrib>Zheng, Xiaofei</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><title>Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.</description><subject>3D printing</subject><subject>Magnesium silicate/polylactic acid</subject><subject>Neuralization</subject><subject>Osteogenesis</subject><subject>Vascularization</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi0EokvhFSofuWTriR3HuVGVtiCtRA_t2XLsyeJVYi-2s1W58eak2i1XTiPNfDOj_yPkAtgaGMjL3drveh8nY9c1q8UauADVvCErUG1XMcb4W7JiIKBSwNkZ-ZDzbunKBtR7csY71grZiRX5c5_iFIsPWxpwTvFgsp1Hk_xvdLSPAWnCLQZMpvgY6JMvP6mhIR5wpPwr3ScfykL6ENPWBG-rU6WT2QbMfp5o9qO3puDl_eaK2jjtY_YFabZmGOLoPpJ3gxkzfjrVc_J4e_Nw_a3a_Lj7fn21qWwtmlJxqVzHW2hQDLVizoG1DAB6qHsDvegY8KFVvZX1IDsFKERnwDDR2mXsHD8nn4939yn-mjEXPflscRxNwDhnzZmSTEID9YLKI2pTzDnhoJeck0nPGph-0a93-lW_ftGvj_qXxYvTj7mf0P1be_W9AF-OAC5JDx6TztZjsOh8Qlu0i_5_P_4CJTicAQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Zhaozhen</creator><creator>Zheng, Boyuan</creator><creator>Yu, Xiaolu</creator><creator>Shi, Yiwan</creator><creator>Zhou, Xinting</creator><creator>Gao, Botao</creator><creator>He, Fupo</creator><creator>Tam, Man Seng</creator><creator>Wang, Huajun</creator><creator>Cheang, Lek Hang</creator><creator>Zheng, Xiaofei</creator><creator>Wu, Tingting</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold</title><author>Wang, Zhaozhen ; Zheng, Boyuan ; Yu, Xiaolu ; Shi, Yiwan ; Zhou, Xinting ; Gao, Botao ; He, Fupo ; Tam, Man Seng ; Wang, Huajun ; Cheang, Lek Hang ; Zheng, Xiaofei ; Wu, Tingting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-368d93715e4f280dd1cc0111b12ba1b49013f78bc62f6981e449a1a047ca1bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Magnesium silicate/polylactic acid</topic><topic>Neuralization</topic><topic>Osteogenesis</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaozhen</creatorcontrib><creatorcontrib>Zheng, Boyuan</creatorcontrib><creatorcontrib>Yu, Xiaolu</creatorcontrib><creatorcontrib>Shi, Yiwan</creatorcontrib><creatorcontrib>Zhou, Xinting</creatorcontrib><creatorcontrib>Gao, Botao</creatorcontrib><creatorcontrib>He, Fupo</creatorcontrib><creatorcontrib>Tam, Man Seng</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Cheang, Lek Hang</creatorcontrib><creatorcontrib>Zheng, Xiaofei</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaozhen</au><au>Zheng, Boyuan</au><au>Yu, Xiaolu</au><au>Shi, Yiwan</au><au>Zhou, Xinting</au><au>Gao, Botao</au><au>He, Fupo</au><au>Tam, Man Seng</au><au>Wang, Huajun</au><au>Cheang, Lek Hang</au><au>Zheng, Xiaofei</au><au>Wu, Tingting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>277</volume><issue>Pt 2</issue><spage>134185</spage><pages>134185-</pages><artnum>134185</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39074694</pmid><doi>10.1016/j.ijbiomac.2024.134185</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-10, Vol.277 (Pt 2), p.134185, Article 134185 |
issn | 0141-8130 1879-0003 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086061512 |
source | Access via ScienceDirect (Elsevier) |
subjects | 3D printing Magnesium silicate/polylactic acid Neuralization Osteogenesis Vascularization |
title | Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoting%20neurovascularized%20bone%20regeneration%20with%20a%20novel%203D%20printed%20inorganic-organic%20magnesium%20silicate/PLA%20composite%20scaffold&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Wang,%20Zhaozhen&rft.date=2024-10-01&rft.volume=277&rft.issue=Pt%202&rft.spage=134185&rft.pages=134185-&rft.artnum=134185&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.134185&rft_dat=%3Cproquest_cross%3E3086061512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086061512&rft_id=info:pmid/39074694&rft_els_id=S0141813024049900&rfr_iscdi=true |