Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion
The machine learning potential has emerged as a promising approach for addressing the accuracy-versus-efficiency dilemma in molecular modeling. Efficiently exploring chemical spaces with high accuracy presents a significant challenge, particularly for the interface reaction system. This study introd...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-08, Vol.20 (15), p.6813-6825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6825 |
---|---|
container_issue | 15 |
container_start_page | 6813 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Chang, Xiaoya Zhang, Di Chu, Qingzhao Chen, Dongping |
description | The machine learning potential has emerged as a promising approach for addressing the accuracy-versus-efficiency dilemma in molecular modeling. Efficiently exploring chemical spaces with high accuracy presents a significant challenge, particularly for the interface reaction system. This study introduces a workflow aimed at achieving this goal by incorporating the classical SOAP descriptor and practical PCA strategy to minimize redundancy and data requirements, while successfully capturing the features of complex potential energy surfaces. Specifically, the study focuses on interface combustion behaviors within promising alloy-based solid propellants. A neural network potential model tailored for modeling AlLi–AP interface reactions under varying conditions is constructed, showcasing excellent predictive capabilities in energy prediction, force estimation, and bond energies. A series of large-scale MD simulations reveal that Li doping significantly influences the initial combustion stage, enhancing reactivity and reducing thermal conductivity. Mass transfer analysis also highlights the considerably higher diffusion coefficient of Li compared to Al, with the former being three times greater. Consequently, the overall combustion process is accelerated by approximately 10%. These breakthroughs pave the way for virtual screening and the rational design of advanced propellant formulations and microstructures incorporating alloy-formula propellants. |
doi_str_mv | 10.1021/acs.jctc.4c00587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086061124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109477532</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-21bfe61256a8663f896a7a1b8ec0663425eab354a161c5b0d07fc82f1263e2f73</originalsourceid><addsrcrecordid>eNp1kctvEzEQxi0EoqVw54QsceFAUr_Wu8utCo9WSlXE42zNesfgKGu3tvcQ_nockvZQidN4xr_vG8sfIa85W3Im-DnYvNzYYpfKMtZ07RNyyhvVL3ot9NOHM-9OyIucN4xJqYR8Tk5kz1olO35K4rUPfvJ_fPhFv-E4hxGC3VEII_0IBersbvYJJwwl0-joNdjfPiBdI6SwF32Npd552H6gF3QFGen3Mo876gO9CgWTA4t0FadhzsXH8JI8c7DN-OpYz8jPz59-rC4X65svV6uL9QKEastC8MGh5qLR0GktXddraIEPHVpWeyUahEE2CrjmthnYyFpnO-G40BKFa-UZeXfwvU3xbsZczOSzxe0WAsY5G8k6zTTnQlX07SN0E-cU6uuM5KxXbdtIUSl2oGyKOSd05jb5CdLOcGb2YZgahtmHYY5hVMmbo_E8TDg-CO5_vwLvD8A_6f3S__r9BXcqlPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109477532</pqid></control><display><type>article</type><title>Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion</title><source>American Chemical Society Journals</source><creator>Chang, Xiaoya ; Zhang, Di ; Chu, Qingzhao ; Chen, Dongping</creator><creatorcontrib>Chang, Xiaoya ; Zhang, Di ; Chu, Qingzhao ; Chen, Dongping</creatorcontrib><description>The machine learning potential has emerged as a promising approach for addressing the accuracy-versus-efficiency dilemma in molecular modeling. Efficiently exploring chemical spaces with high accuracy presents a significant challenge, particularly for the interface reaction system. This study introduces a workflow aimed at achieving this goal by incorporating the classical SOAP descriptor and practical PCA strategy to minimize redundancy and data requirements, while successfully capturing the features of complex potential energy surfaces. Specifically, the study focuses on interface combustion behaviors within promising alloy-based solid propellants. A neural network potential model tailored for modeling AlLi–AP interface reactions under varying conditions is constructed, showcasing excellent predictive capabilities in energy prediction, force estimation, and bond energies. A series of large-scale MD simulations reveal that Li doping significantly influences the initial combustion stage, enhancing reactivity and reducing thermal conductivity. Mass transfer analysis also highlights the considerably higher diffusion coefficient of Li compared to Al, with the former being three times greater. Consequently, the overall combustion process is accelerated by approximately 10%. These breakthroughs pave the way for virtual screening and the rational design of advanced propellant formulations and microstructures incorporating alloy-formula propellants.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00587</identifier><identifier>PMID: 39074381</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Condensed Matter, Interfaces, and Materials ; Diffusion coefficient ; Formulations ; Interface reactions ; Machine learning ; Mass transfer ; Modelling ; Neural networks ; Potential energy ; Predictions ; Propellant combustion ; Redundancy ; Solid propellants ; Thermal conductivity ; Workflow</subject><ispartof>Journal of chemical theory and computation, 2024-08, Vol.20 (15), p.6813-6825</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 13, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-21bfe61256a8663f896a7a1b8ec0663425eab354a161c5b0d07fc82f1263e2f73</cites><orcidid>0009-0009-1941-4602 ; 0000-0002-2090-1864 ; 0000-0002-4232-3356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00587$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00587$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Xiaoya</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chu, Qingzhao</creatorcontrib><creatorcontrib>Chen, Dongping</creatorcontrib><title>Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The machine learning potential has emerged as a promising approach for addressing the accuracy-versus-efficiency dilemma in molecular modeling. Efficiently exploring chemical spaces with high accuracy presents a significant challenge, particularly for the interface reaction system. This study introduces a workflow aimed at achieving this goal by incorporating the classical SOAP descriptor and practical PCA strategy to minimize redundancy and data requirements, while successfully capturing the features of complex potential energy surfaces. Specifically, the study focuses on interface combustion behaviors within promising alloy-based solid propellants. A neural network potential model tailored for modeling AlLi–AP interface reactions under varying conditions is constructed, showcasing excellent predictive capabilities in energy prediction, force estimation, and bond energies. A series of large-scale MD simulations reveal that Li doping significantly influences the initial combustion stage, enhancing reactivity and reducing thermal conductivity. Mass transfer analysis also highlights the considerably higher diffusion coefficient of Li compared to Al, with the former being three times greater. Consequently, the overall combustion process is accelerated by approximately 10%. These breakthroughs pave the way for virtual screening and the rational design of advanced propellant formulations and microstructures incorporating alloy-formula propellants.</description><subject>Accuracy</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Diffusion coefficient</subject><subject>Formulations</subject><subject>Interface reactions</subject><subject>Machine learning</subject><subject>Mass transfer</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Potential energy</subject><subject>Predictions</subject><subject>Propellant combustion</subject><subject>Redundancy</subject><subject>Solid propellants</subject><subject>Thermal conductivity</subject><subject>Workflow</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctvEzEQxi0EoqVw54QsceFAUr_Wu8utCo9WSlXE42zNesfgKGu3tvcQ_nockvZQidN4xr_vG8sfIa85W3Im-DnYvNzYYpfKMtZ07RNyyhvVL3ot9NOHM-9OyIucN4xJqYR8Tk5kz1olO35K4rUPfvJ_fPhFv-E4hxGC3VEII_0IBersbvYJJwwl0-joNdjfPiBdI6SwF32Npd552H6gF3QFGen3Mo876gO9CgWTA4t0FadhzsXH8JI8c7DN-OpYz8jPz59-rC4X65svV6uL9QKEastC8MGh5qLR0GktXddraIEPHVpWeyUahEE2CrjmthnYyFpnO-G40BKFa-UZeXfwvU3xbsZczOSzxe0WAsY5G8k6zTTnQlX07SN0E-cU6uuM5KxXbdtIUSl2oGyKOSd05jb5CdLOcGb2YZgahtmHYY5hVMmbo_E8TDg-CO5_vwLvD8A_6f3S__r9BXcqlPc</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Chang, Xiaoya</creator><creator>Zhang, Di</creator><creator>Chu, Qingzhao</creator><creator>Chen, Dongping</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-1941-4602</orcidid><orcidid>https://orcid.org/0000-0002-2090-1864</orcidid><orcidid>https://orcid.org/0000-0002-4232-3356</orcidid></search><sort><creationdate>20240813</creationdate><title>Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion</title><author>Chang, Xiaoya ; Zhang, Di ; Chu, Qingzhao ; Chen, Dongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-21bfe61256a8663f896a7a1b8ec0663425eab354a161c5b0d07fc82f1263e2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Diffusion coefficient</topic><topic>Formulations</topic><topic>Interface reactions</topic><topic>Machine learning</topic><topic>Mass transfer</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Potential energy</topic><topic>Predictions</topic><topic>Propellant combustion</topic><topic>Redundancy</topic><topic>Solid propellants</topic><topic>Thermal conductivity</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Xiaoya</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chu, Qingzhao</creatorcontrib><creatorcontrib>Chen, Dongping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Xiaoya</au><au>Zhang, Di</au><au>Chu, Qingzhao</au><au>Chen, Dongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-08-13</date><risdate>2024</risdate><volume>20</volume><issue>15</issue><spage>6813</spage><epage>6825</epage><pages>6813-6825</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>The machine learning potential has emerged as a promising approach for addressing the accuracy-versus-efficiency dilemma in molecular modeling. Efficiently exploring chemical spaces with high accuracy presents a significant challenge, particularly for the interface reaction system. This study introduces a workflow aimed at achieving this goal by incorporating the classical SOAP descriptor and practical PCA strategy to minimize redundancy and data requirements, while successfully capturing the features of complex potential energy surfaces. Specifically, the study focuses on interface combustion behaviors within promising alloy-based solid propellants. A neural network potential model tailored for modeling AlLi–AP interface reactions under varying conditions is constructed, showcasing excellent predictive capabilities in energy prediction, force estimation, and bond energies. A series of large-scale MD simulations reveal that Li doping significantly influences the initial combustion stage, enhancing reactivity and reducing thermal conductivity. Mass transfer analysis also highlights the considerably higher diffusion coefficient of Li compared to Al, with the former being three times greater. Consequently, the overall combustion process is accelerated by approximately 10%. These breakthroughs pave the way for virtual screening and the rational design of advanced propellant formulations and microstructures incorporating alloy-formula propellants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39074381</pmid><doi>10.1021/acs.jctc.4c00587</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-1941-4602</orcidid><orcidid>https://orcid.org/0000-0002-2090-1864</orcidid><orcidid>https://orcid.org/0000-0002-4232-3356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-08, Vol.20 (15), p.6813-6825 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086061124 |
source | American Chemical Society Journals |
subjects | Accuracy Condensed Matter, Interfaces, and Materials Diffusion coefficient Formulations Interface reactions Machine learning Mass transfer Modelling Neural networks Potential energy Predictions Propellant combustion Redundancy Solid propellants Thermal conductivity Workflow |
title | Minimizing Redundancy and Data Requirements of Machine Learning Potential: A Case Study in Interface Combustion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20Redundancy%20and%20Data%20Requirements%20of%20Machine%20Learning%20Potential:%20A%20Case%20Study%20in%20Interface%20Combustion&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Chang,%20Xiaoya&rft.date=2024-08-13&rft.volume=20&rft.issue=15&rft.spage=6813&rft.epage=6825&rft.pages=6813-6825&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00587&rft_dat=%3Cproquest_cross%3E3109477532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109477532&rft_id=info:pmid/39074381&rfr_iscdi=true |