A hybrid model for predicting response to risperidone after first episode of psychosis
Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We ev...
Gespeichert in:
Veröffentlicht in: | Revista brasileira de psiquiatria 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Revista brasileira de psiquiatria |
container_volume | |
creator | Costa, Giovany Oliveira Ota, Vanessa K Luiz, Matheus Rodrigues Rosa, Joice Santos Xavier, Gabriela Mauer, Jessica Honorato Santoro, Marcos L Carvalho, Carolina Muniz Cavalcante, Daniel A Bugiga, Amanda V G Bressan, Rodrigo A Breen, Gerome Gadelha, Ary Noto, Cristiano Mazzotti, Diego R Belangero, Sintia I |
description | Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment. |
doi_str_mv | 10.47626/1516-4446-2024-3608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086060952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086060952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1478-a6987b487abd5df42da820266bb8f46e72a048b42cbf70590c5cc98c87649ed33</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwDxDKkUshTdMkPU4TX9IkLoC4RWnisKC2KUl32L-nZRuSJfvwvLb8IHSdkzsmOOX3eZnzjDHGM0ooywpO5Ama55JUGSvp5-k4H4kZukjpmxAqCinO0ayoiGBjzdHHEm92dfQWt8FCg12IuI9gvRl894UjpD50CfAQcPSph5EMHWDtBojY-ZgGDL1PYxYHh_u0M5uQfLpEZ043Ca4OfYHeHx_eVs_Z-vXpZbVcZyZnQmaaV1LUTApd29I6Rq2W4zOc17V0jIOgmjBZM2pqJ0hZEVMaU0kjBWcV2KJYoNv93j6Gny2kQbU-GWga3UHYJlUQyQknVUlHlO1RE0NKEZzqo2913KmcqD-javKlJl9qMqomo2Ps5nBhW7dg_0NHhcUvsCtxtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086060952</pqid></control><display><type>article</type><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</creator><creatorcontrib>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</creatorcontrib><description>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</description><identifier>ISSN: 1516-4446</identifier><identifier>ISSN: 1809-452X</identifier><identifier>EISSN: 1809-452X</identifier><identifier>DOI: 10.47626/1516-4446-2024-3608</identifier><identifier>PMID: 39074074</identifier><language>eng</language><publisher>Brazil</publisher><ispartof>Revista brasileira de psiquiatria, 2024-07</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8043-2935 ; 0000-0003-0129-6360 ; 0000-0002-2419-4351 ; 0000-0002-6684-4201 ; 0000-0002-2706-9118 ; 0000-0002-1395-0342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Giovany Oliveira</creatorcontrib><creatorcontrib>Ota, Vanessa K</creatorcontrib><creatorcontrib>Luiz, Matheus Rodrigues</creatorcontrib><creatorcontrib>Rosa, Joice Santos</creatorcontrib><creatorcontrib>Xavier, Gabriela</creatorcontrib><creatorcontrib>Mauer, Jessica Honorato</creatorcontrib><creatorcontrib>Santoro, Marcos L</creatorcontrib><creatorcontrib>Carvalho, Carolina Muniz</creatorcontrib><creatorcontrib>Cavalcante, Daniel A</creatorcontrib><creatorcontrib>Bugiga, Amanda V G</creatorcontrib><creatorcontrib>Bressan, Rodrigo A</creatorcontrib><creatorcontrib>Breen, Gerome</creatorcontrib><creatorcontrib>Gadelha, Ary</creatorcontrib><creatorcontrib>Noto, Cristiano</creatorcontrib><creatorcontrib>Mazzotti, Diego R</creatorcontrib><creatorcontrib>Belangero, Sintia I</creatorcontrib><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><title>Revista brasileira de psiquiatria</title><addtitle>Braz J Psychiatry</addtitle><description>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</description><issn>1516-4446</issn><issn>1809-452X</issn><issn>1809-452X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwDxDKkUshTdMkPU4TX9IkLoC4RWnisKC2KUl32L-nZRuSJfvwvLb8IHSdkzsmOOX3eZnzjDHGM0ooywpO5Ama55JUGSvp5-k4H4kZukjpmxAqCinO0ayoiGBjzdHHEm92dfQWt8FCg12IuI9gvRl894UjpD50CfAQcPSph5EMHWDtBojY-ZgGDL1PYxYHh_u0M5uQfLpEZ043Ca4OfYHeHx_eVs_Z-vXpZbVcZyZnQmaaV1LUTApd29I6Rq2W4zOc17V0jIOgmjBZM2pqJ0hZEVMaU0kjBWcV2KJYoNv93j6Gny2kQbU-GWga3UHYJlUQyQknVUlHlO1RE0NKEZzqo2913KmcqD-javKlJl9qMqomo2Ps5nBhW7dg_0NHhcUvsCtxtA</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Costa, Giovany Oliveira</creator><creator>Ota, Vanessa K</creator><creator>Luiz, Matheus Rodrigues</creator><creator>Rosa, Joice Santos</creator><creator>Xavier, Gabriela</creator><creator>Mauer, Jessica Honorato</creator><creator>Santoro, Marcos L</creator><creator>Carvalho, Carolina Muniz</creator><creator>Cavalcante, Daniel A</creator><creator>Bugiga, Amanda V G</creator><creator>Bressan, Rodrigo A</creator><creator>Breen, Gerome</creator><creator>Gadelha, Ary</creator><creator>Noto, Cristiano</creator><creator>Mazzotti, Diego R</creator><creator>Belangero, Sintia I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8043-2935</orcidid><orcidid>https://orcid.org/0000-0003-0129-6360</orcidid><orcidid>https://orcid.org/0000-0002-2419-4351</orcidid><orcidid>https://orcid.org/0000-0002-6684-4201</orcidid><orcidid>https://orcid.org/0000-0002-2706-9118</orcidid><orcidid>https://orcid.org/0000-0002-1395-0342</orcidid></search><sort><creationdate>20240729</creationdate><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><author>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1478-a6987b487abd5df42da820266bb8f46e72a048b42cbf70590c5cc98c87649ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Giovany Oliveira</creatorcontrib><creatorcontrib>Ota, Vanessa K</creatorcontrib><creatorcontrib>Luiz, Matheus Rodrigues</creatorcontrib><creatorcontrib>Rosa, Joice Santos</creatorcontrib><creatorcontrib>Xavier, Gabriela</creatorcontrib><creatorcontrib>Mauer, Jessica Honorato</creatorcontrib><creatorcontrib>Santoro, Marcos L</creatorcontrib><creatorcontrib>Carvalho, Carolina Muniz</creatorcontrib><creatorcontrib>Cavalcante, Daniel A</creatorcontrib><creatorcontrib>Bugiga, Amanda V G</creatorcontrib><creatorcontrib>Bressan, Rodrigo A</creatorcontrib><creatorcontrib>Breen, Gerome</creatorcontrib><creatorcontrib>Gadelha, Ary</creatorcontrib><creatorcontrib>Noto, Cristiano</creatorcontrib><creatorcontrib>Mazzotti, Diego R</creatorcontrib><creatorcontrib>Belangero, Sintia I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Revista brasileira de psiquiatria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Giovany Oliveira</au><au>Ota, Vanessa K</au><au>Luiz, Matheus Rodrigues</au><au>Rosa, Joice Santos</au><au>Xavier, Gabriela</au><au>Mauer, Jessica Honorato</au><au>Santoro, Marcos L</au><au>Carvalho, Carolina Muniz</au><au>Cavalcante, Daniel A</au><au>Bugiga, Amanda V G</au><au>Bressan, Rodrigo A</au><au>Breen, Gerome</au><au>Gadelha, Ary</au><au>Noto, Cristiano</au><au>Mazzotti, Diego R</au><au>Belangero, Sintia I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid model for predicting response to risperidone after first episode of psychosis</atitle><jtitle>Revista brasileira de psiquiatria</jtitle><addtitle>Braz J Psychiatry</addtitle><date>2024-07-29</date><risdate>2024</risdate><issn>1516-4446</issn><issn>1809-452X</issn><eissn>1809-452X</eissn><abstract>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</abstract><cop>Brazil</cop><pmid>39074074</pmid><doi>10.47626/1516-4446-2024-3608</doi><orcidid>https://orcid.org/0000-0001-8043-2935</orcidid><orcidid>https://orcid.org/0000-0003-0129-6360</orcidid><orcidid>https://orcid.org/0000-0002-2419-4351</orcidid><orcidid>https://orcid.org/0000-0002-6684-4201</orcidid><orcidid>https://orcid.org/0000-0002-2706-9118</orcidid><orcidid>https://orcid.org/0000-0002-1395-0342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1516-4446 |
ispartof | Revista brasileira de psiquiatria, 2024-07 |
issn | 1516-4446 1809-452X 1809-452X |
language | eng |
recordid | cdi_proquest_miscellaneous_3086060952 |
source | DOAJ Directory of Open Access Journals; PubMed Central; PubMed Central Open Access |
title | A hybrid model for predicting response to risperidone after first episode of psychosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T13%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20model%20for%20predicting%20response%20to%20risperidone%20after%20first%20episode%20of%20psychosis&rft.jtitle=Revista%20brasileira%20de%20psiquiatria&rft.au=Costa,%20Giovany%20Oliveira&rft.date=2024-07-29&rft.issn=1516-4446&rft.eissn=1809-452X&rft_id=info:doi/10.47626/1516-4446-2024-3608&rft_dat=%3Cproquest_cross%3E3086060952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086060952&rft_id=info:pmid/39074074&rfr_iscdi=true |