A hybrid model for predicting response to risperidone after first episode of psychosis

Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista brasileira de psiquiatria 2024-07
Hauptverfasser: Costa, Giovany Oliveira, Ota, Vanessa K, Luiz, Matheus Rodrigues, Rosa, Joice Santos, Xavier, Gabriela, Mauer, Jessica Honorato, Santoro, Marcos L, Carvalho, Carolina Muniz, Cavalcante, Daniel A, Bugiga, Amanda V G, Bressan, Rodrigo A, Breen, Gerome, Gadelha, Ary, Noto, Cristiano, Mazzotti, Diego R, Belangero, Sintia I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Revista brasileira de psiquiatria
container_volume
creator Costa, Giovany Oliveira
Ota, Vanessa K
Luiz, Matheus Rodrigues
Rosa, Joice Santos
Xavier, Gabriela
Mauer, Jessica Honorato
Santoro, Marcos L
Carvalho, Carolina Muniz
Cavalcante, Daniel A
Bugiga, Amanda V G
Bressan, Rodrigo A
Breen, Gerome
Gadelha, Ary
Noto, Cristiano
Mazzotti, Diego R
Belangero, Sintia I
description Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.
doi_str_mv 10.47626/1516-4446-2024-3608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086060952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086060952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1478-a6987b487abd5df42da820266bb8f46e72a048b42cbf70590c5cc98c87649ed33</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwDxDKkUshTdMkPU4TX9IkLoC4RWnisKC2KUl32L-nZRuSJfvwvLb8IHSdkzsmOOX3eZnzjDHGM0ooywpO5Ama55JUGSvp5-k4H4kZukjpmxAqCinO0ayoiGBjzdHHEm92dfQWt8FCg12IuI9gvRl894UjpD50CfAQcPSph5EMHWDtBojY-ZgGDL1PYxYHh_u0M5uQfLpEZ043Ca4OfYHeHx_eVs_Z-vXpZbVcZyZnQmaaV1LUTApd29I6Rq2W4zOc17V0jIOgmjBZM2pqJ0hZEVMaU0kjBWcV2KJYoNv93j6Gny2kQbU-GWga3UHYJlUQyQknVUlHlO1RE0NKEZzqo2913KmcqD-javKlJl9qMqomo2Ps5nBhW7dg_0NHhcUvsCtxtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086060952</pqid></control><display><type>article</type><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</creator><creatorcontrib>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</creatorcontrib><description>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</description><identifier>ISSN: 1516-4446</identifier><identifier>ISSN: 1809-452X</identifier><identifier>EISSN: 1809-452X</identifier><identifier>DOI: 10.47626/1516-4446-2024-3608</identifier><identifier>PMID: 39074074</identifier><language>eng</language><publisher>Brazil</publisher><ispartof>Revista brasileira de psiquiatria, 2024-07</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8043-2935 ; 0000-0003-0129-6360 ; 0000-0002-2419-4351 ; 0000-0002-6684-4201 ; 0000-0002-2706-9118 ; 0000-0002-1395-0342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Giovany Oliveira</creatorcontrib><creatorcontrib>Ota, Vanessa K</creatorcontrib><creatorcontrib>Luiz, Matheus Rodrigues</creatorcontrib><creatorcontrib>Rosa, Joice Santos</creatorcontrib><creatorcontrib>Xavier, Gabriela</creatorcontrib><creatorcontrib>Mauer, Jessica Honorato</creatorcontrib><creatorcontrib>Santoro, Marcos L</creatorcontrib><creatorcontrib>Carvalho, Carolina Muniz</creatorcontrib><creatorcontrib>Cavalcante, Daniel A</creatorcontrib><creatorcontrib>Bugiga, Amanda V G</creatorcontrib><creatorcontrib>Bressan, Rodrigo A</creatorcontrib><creatorcontrib>Breen, Gerome</creatorcontrib><creatorcontrib>Gadelha, Ary</creatorcontrib><creatorcontrib>Noto, Cristiano</creatorcontrib><creatorcontrib>Mazzotti, Diego R</creatorcontrib><creatorcontrib>Belangero, Sintia I</creatorcontrib><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><title>Revista brasileira de psiquiatria</title><addtitle>Braz J Psychiatry</addtitle><description>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</description><issn>1516-4446</issn><issn>1809-452X</issn><issn>1809-452X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwDxDKkUshTdMkPU4TX9IkLoC4RWnisKC2KUl32L-nZRuSJfvwvLb8IHSdkzsmOOX3eZnzjDHGM0ooywpO5Ama55JUGSvp5-k4H4kZukjpmxAqCinO0ayoiGBjzdHHEm92dfQWt8FCg12IuI9gvRl894UjpD50CfAQcPSph5EMHWDtBojY-ZgGDL1PYxYHh_u0M5uQfLpEZ043Ca4OfYHeHx_eVs_Z-vXpZbVcZyZnQmaaV1LUTApd29I6Rq2W4zOc17V0jIOgmjBZM2pqJ0hZEVMaU0kjBWcV2KJYoNv93j6Gny2kQbU-GWga3UHYJlUQyQknVUlHlO1RE0NKEZzqo2913KmcqD-javKlJl9qMqomo2Ps5nBhW7dg_0NHhcUvsCtxtA</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Costa, Giovany Oliveira</creator><creator>Ota, Vanessa K</creator><creator>Luiz, Matheus Rodrigues</creator><creator>Rosa, Joice Santos</creator><creator>Xavier, Gabriela</creator><creator>Mauer, Jessica Honorato</creator><creator>Santoro, Marcos L</creator><creator>Carvalho, Carolina Muniz</creator><creator>Cavalcante, Daniel A</creator><creator>Bugiga, Amanda V G</creator><creator>Bressan, Rodrigo A</creator><creator>Breen, Gerome</creator><creator>Gadelha, Ary</creator><creator>Noto, Cristiano</creator><creator>Mazzotti, Diego R</creator><creator>Belangero, Sintia I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8043-2935</orcidid><orcidid>https://orcid.org/0000-0003-0129-6360</orcidid><orcidid>https://orcid.org/0000-0002-2419-4351</orcidid><orcidid>https://orcid.org/0000-0002-6684-4201</orcidid><orcidid>https://orcid.org/0000-0002-2706-9118</orcidid><orcidid>https://orcid.org/0000-0002-1395-0342</orcidid></search><sort><creationdate>20240729</creationdate><title>A hybrid model for predicting response to risperidone after first episode of psychosis</title><author>Costa, Giovany Oliveira ; Ota, Vanessa K ; Luiz, Matheus Rodrigues ; Rosa, Joice Santos ; Xavier, Gabriela ; Mauer, Jessica Honorato ; Santoro, Marcos L ; Carvalho, Carolina Muniz ; Cavalcante, Daniel A ; Bugiga, Amanda V G ; Bressan, Rodrigo A ; Breen, Gerome ; Gadelha, Ary ; Noto, Cristiano ; Mazzotti, Diego R ; Belangero, Sintia I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1478-a6987b487abd5df42da820266bb8f46e72a048b42cbf70590c5cc98c87649ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Giovany Oliveira</creatorcontrib><creatorcontrib>Ota, Vanessa K</creatorcontrib><creatorcontrib>Luiz, Matheus Rodrigues</creatorcontrib><creatorcontrib>Rosa, Joice Santos</creatorcontrib><creatorcontrib>Xavier, Gabriela</creatorcontrib><creatorcontrib>Mauer, Jessica Honorato</creatorcontrib><creatorcontrib>Santoro, Marcos L</creatorcontrib><creatorcontrib>Carvalho, Carolina Muniz</creatorcontrib><creatorcontrib>Cavalcante, Daniel A</creatorcontrib><creatorcontrib>Bugiga, Amanda V G</creatorcontrib><creatorcontrib>Bressan, Rodrigo A</creatorcontrib><creatorcontrib>Breen, Gerome</creatorcontrib><creatorcontrib>Gadelha, Ary</creatorcontrib><creatorcontrib>Noto, Cristiano</creatorcontrib><creatorcontrib>Mazzotti, Diego R</creatorcontrib><creatorcontrib>Belangero, Sintia I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Revista brasileira de psiquiatria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Giovany Oliveira</au><au>Ota, Vanessa K</au><au>Luiz, Matheus Rodrigues</au><au>Rosa, Joice Santos</au><au>Xavier, Gabriela</au><au>Mauer, Jessica Honorato</au><au>Santoro, Marcos L</au><au>Carvalho, Carolina Muniz</au><au>Cavalcante, Daniel A</au><au>Bugiga, Amanda V G</au><au>Bressan, Rodrigo A</au><au>Breen, Gerome</au><au>Gadelha, Ary</au><au>Noto, Cristiano</au><au>Mazzotti, Diego R</au><au>Belangero, Sintia I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid model for predicting response to risperidone after first episode of psychosis</atitle><jtitle>Revista brasileira de psiquiatria</jtitle><addtitle>Braz J Psychiatry</addtitle><date>2024-07-29</date><risdate>2024</risdate><issn>1516-4446</issn><issn>1809-452X</issn><eissn>1809-452X</eissn><abstract>Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.</abstract><cop>Brazil</cop><pmid>39074074</pmid><doi>10.47626/1516-4446-2024-3608</doi><orcidid>https://orcid.org/0000-0001-8043-2935</orcidid><orcidid>https://orcid.org/0000-0003-0129-6360</orcidid><orcidid>https://orcid.org/0000-0002-2419-4351</orcidid><orcidid>https://orcid.org/0000-0002-6684-4201</orcidid><orcidid>https://orcid.org/0000-0002-2706-9118</orcidid><orcidid>https://orcid.org/0000-0002-1395-0342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1516-4446
ispartof Revista brasileira de psiquiatria, 2024-07
issn 1516-4446
1809-452X
1809-452X
language eng
recordid cdi_proquest_miscellaneous_3086060952
source DOAJ Directory of Open Access Journals; PubMed Central; PubMed Central Open Access
title A hybrid model for predicting response to risperidone after first episode of psychosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T13%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20model%20for%20predicting%20response%20to%20risperidone%20after%20first%20episode%20of%20psychosis&rft.jtitle=Revista%20brasileira%20de%20psiquiatria&rft.au=Costa,%20Giovany%20Oliveira&rft.date=2024-07-29&rft.issn=1516-4446&rft.eissn=1809-452X&rft_id=info:doi/10.47626/1516-4446-2024-3608&rft_dat=%3Cproquest_cross%3E3086060952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086060952&rft_id=info:pmid/39074074&rfr_iscdi=true