Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol

(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 2024-10, Vol.180, p.110480, Article 110480
Hauptverfasser: Qin, Weichuang, Zhang, Lujia, Yang, Yichen, Zhou, Wei, Hou, Shuting, Huang, Jie, Gao, Bei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110480
container_title Enzyme and microbial technology
container_volume 180
creator Qin, Weichuang
Zhang, Lujia
Yang, Yichen
Zhou, Wei
Hou, Shuting
Huang, Jie
Gao, Bei
description (S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production. •decrease steric hindrance and fine-tune pocket microenvironment through rational design.•Achieved increases in (S)-equol yield through redesign of DHDR.•Provides a feasible method for enzyme modification, accelerating the industrial production of (S)-equol.
doi_str_mv 10.1016/j.enzmictec.2024.110480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085685083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022924000875</els_id><sourcerecordid>3153646441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-c3b986b7939dfda4d359708a77efbb0e21f26c1ba03880242cacbd9edb9dedee3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpqN20f6HdY3JYZ_ThXekYkqYpBAL56FVopZEts1450rrg_PrIOM3Vp4HheedlHkJ-UphRoM3FaobD6zrYEe2MARMzSkFI-ESmVLaqBgXqM5kCFbQGxtSEfM15BVAWAr6QCVfQtJyJKfn7YMYQB9NXDnNYDFX0VV7GNNZ2acJQtsudS3GBg8lYXd9eP1Q-pgq9DzbgMFZ5N4zLEs375NnjeY0v29h_Iyfe9Bm_v89T8nzz6-nqtr67__3n6vKutkxC6eCdkk3XKq6cd0Y4PlctSNO26LsOkFHPGks7A1zK8iazxnZOoeuUQ4fIT8nZ4e4mxZct5lGvQ7bY92bAuM2a0zlvRCMEPY6CnDdyDpIXtD2gNsWcE3q9SWFt0k5T0Hv_eqU__Ou9f33wX5I_3ku23RrdR-6_8AJcHgAsVv4FTDrvPVp0IaEdtYvhaMkbpbqbFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085685083</pqid></control><display><type>article</type><title>Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Qin, Weichuang ; Zhang, Lujia ; Yang, Yichen ; Zhou, Wei ; Hou, Shuting ; Huang, Jie ; Gao, Bei</creator><creatorcontrib>Qin, Weichuang ; Zhang, Lujia ; Yang, Yichen ; Zhou, Wei ; Hou, Shuting ; Huang, Jie ; Gao, Bei</creatorcontrib><description>(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production. •decrease steric hindrance and fine-tune pocket microenvironment through rational design.•Achieved increases in (S)-equol yield through redesign of DHDR.•Provides a feasible method for enzyme modification, accelerating the industrial production of (S)-equol.</description><identifier>ISSN: 0141-0229</identifier><identifier>ISSN: 1879-0909</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2024.110480</identifier><identifier>PMID: 39067324</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>(S)-equol ; biocatalysts ; daidzein ; Dihydrodaidzein reductase ; Equol - biosynthesis ; Equol - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; industrial applications ; Isoflavones - biosynthesis ; Isoflavones - metabolism ; metabolites ; Molecular Docking Simulation ; mutagenesis ; mutants ; oxidoreductases ; Protein Engineering ; Rational design ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Short Chain Dehydrogenase-Reductases - genetics ; Short Chain Dehydrogenase-Reductases - metabolism ; technology ; Whole-cell biocatalyst</subject><ispartof>Enzyme and microbial technology, 2024-10, Vol.180, p.110480, Article 110480</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-c3b986b7939dfda4d359708a77efbb0e21f26c1ba03880242cacbd9edb9dedee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enzmictec.2024.110480$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27904,27905,45975</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39067324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Weichuang</creatorcontrib><creatorcontrib>Zhang, Lujia</creatorcontrib><creatorcontrib>Yang, Yichen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hou, Shuting</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Gao, Bei</creatorcontrib><title>Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production. •decrease steric hindrance and fine-tune pocket microenvironment through rational design.•Achieved increases in (S)-equol yield through redesign of DHDR.•Provides a feasible method for enzyme modification, accelerating the industrial production of (S)-equol.</description><subject>(S)-equol</subject><subject>biocatalysts</subject><subject>daidzein</subject><subject>Dihydrodaidzein reductase</subject><subject>Equol - biosynthesis</subject><subject>Equol - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>industrial applications</subject><subject>Isoflavones - biosynthesis</subject><subject>Isoflavones - metabolism</subject><subject>metabolites</subject><subject>Molecular Docking Simulation</subject><subject>mutagenesis</subject><subject>mutants</subject><subject>oxidoreductases</subject><subject>Protein Engineering</subject><subject>Rational design</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Short Chain Dehydrogenase-Reductases - genetics</subject><subject>Short Chain Dehydrogenase-Reductases - metabolism</subject><subject>technology</subject><subject>Whole-cell biocatalyst</subject><issn>0141-0229</issn><issn>1879-0909</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVpqN20f6HdY3JYZ_ThXekYkqYpBAL56FVopZEts1450rrg_PrIOM3Vp4HheedlHkJ-UphRoM3FaobD6zrYEe2MARMzSkFI-ESmVLaqBgXqM5kCFbQGxtSEfM15BVAWAr6QCVfQtJyJKfn7YMYQB9NXDnNYDFX0VV7GNNZ2acJQtsudS3GBg8lYXd9eP1Q-pgq9DzbgMFZ5N4zLEs375NnjeY0v29h_Iyfe9Bm_v89T8nzz6-nqtr67__3n6vKutkxC6eCdkk3XKq6cd0Y4PlctSNO26LsOkFHPGks7A1zK8iazxnZOoeuUQ4fIT8nZ4e4mxZct5lGvQ7bY92bAuM2a0zlvRCMEPY6CnDdyDpIXtD2gNsWcE3q9SWFt0k5T0Hv_eqU__Ou9f33wX5I_3ku23RrdR-6_8AJcHgAsVv4FTDrvPVp0IaEdtYvhaMkbpbqbFw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Qin, Weichuang</creator><creator>Zhang, Lujia</creator><creator>Yang, Yichen</creator><creator>Zhou, Wei</creator><creator>Hou, Shuting</creator><creator>Huang, Jie</creator><creator>Gao, Bei</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241001</creationdate><title>Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol</title><author>Qin, Weichuang ; Zhang, Lujia ; Yang, Yichen ; Zhou, Wei ; Hou, Shuting ; Huang, Jie ; Gao, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-c3b986b7939dfda4d359708a77efbb0e21f26c1ba03880242cacbd9edb9dedee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(S)-equol</topic><topic>biocatalysts</topic><topic>daidzein</topic><topic>Dihydrodaidzein reductase</topic><topic>Equol - biosynthesis</topic><topic>Equol - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>industrial applications</topic><topic>Isoflavones - biosynthesis</topic><topic>Isoflavones - metabolism</topic><topic>metabolites</topic><topic>Molecular Docking Simulation</topic><topic>mutagenesis</topic><topic>mutants</topic><topic>oxidoreductases</topic><topic>Protein Engineering</topic><topic>Rational design</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Short Chain Dehydrogenase-Reductases - genetics</topic><topic>Short Chain Dehydrogenase-Reductases - metabolism</topic><topic>technology</topic><topic>Whole-cell biocatalyst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Weichuang</creatorcontrib><creatorcontrib>Zhang, Lujia</creatorcontrib><creatorcontrib>Yang, Yichen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hou, Shuting</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Gao, Bei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Weichuang</au><au>Zhang, Lujia</au><au>Yang, Yichen</au><au>Zhou, Wei</au><au>Hou, Shuting</au><au>Huang, Jie</au><au>Gao, Bei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>180</volume><spage>110480</spage><pages>110480-</pages><artnum>110480</artnum><issn>0141-0229</issn><issn>1879-0909</issn><eissn>1879-0909</eissn><abstract>(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production. •decrease steric hindrance and fine-tune pocket microenvironment through rational design.•Achieved increases in (S)-equol yield through redesign of DHDR.•Provides a feasible method for enzyme modification, accelerating the industrial production of (S)-equol.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39067324</pmid><doi>10.1016/j.enzmictec.2024.110480</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-0229
ispartof Enzyme and microbial technology, 2024-10, Vol.180, p.110480, Article 110480
issn 0141-0229
1879-0909
1879-0909
language eng
recordid cdi_proquest_miscellaneous_3085685083
source MEDLINE; Elsevier ScienceDirect Journals
subjects (S)-equol
biocatalysts
daidzein
Dihydrodaidzein reductase
Equol - biosynthesis
Equol - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - metabolism
industrial applications
Isoflavones - biosynthesis
Isoflavones - metabolism
metabolites
Molecular Docking Simulation
mutagenesis
mutants
oxidoreductases
Protein Engineering
Rational design
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Short Chain Dehydrogenase-Reductases - genetics
Short Chain Dehydrogenase-Reductases - metabolism
technology
Whole-cell biocatalyst
title Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20short-chain%20dehydrogenase%20DHDR%20for%20efficient%20synthesis%20of%20(S)-equol&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Qin,%20Weichuang&rft.date=2024-10-01&rft.volume=180&rft.spage=110480&rft.pages=110480-&rft.artnum=110480&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2024.110480&rft_dat=%3Cproquest_cross%3E3153646441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085685083&rft_id=info:pmid/39067324&rft_els_id=S0141022924000875&rfr_iscdi=true