Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering

The fabrication of Ti-Mg composite biomaterials was investigated using spark plasma sintering (SPS) with varying Mg contents and sintering pressures. The effects of powder mixing, Mg addition, and sintering pressure on the microstructure and mechanical properties of the composite materials were syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-07, Vol.17 (14), p.3470
Hauptverfasser: Masuda, Taisei, Oh, Minho, Kobayashi, Equo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 3470
container_title Materials
container_volume 17
creator Masuda, Taisei
Oh, Minho
Kobayashi, Equo
description The fabrication of Ti-Mg composite biomaterials was investigated using spark plasma sintering (SPS) with varying Mg contents and sintering pressures. The effects of powder mixing, Mg addition, and sintering pressure on the microstructure and mechanical properties of the composite materials were systematically analyzed. Uniform dispersion of Mg within the Ti matrix was achieved, confirming the efficacy of ethanol-assisted ball milling for consistent mixing. The Young's modulus of the composite materials exhibited a linear decrease with increasing Mg content, with Ti-30vol%Mg and Ti-50vol%Mg demonstrating reduced modulus values compared to pure Ti. Based on density measurements, compression tests, and Young's modulus results, it was determined that the sinterability of Ti-30vol%Mg saturates at a sintering pressure of approximately 50 MPa. Moreover, our immersion tests in physiological saline underscore the profound significance of our findings. Ti-30vol%Mg maintained compressive strength above that of cortical bone for 6-to-10 days, with mechanical integrity improving under higher sintering pressures. These findings mark a significant leap towards the development of Ti-Mg composite biomaterials with tailored mechanical properties, thereby enhancing biocompatibility and osseointegration for a wide range of biomedical applications.
doi_str_mv 10.3390/ma17143470
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085119210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803492033</galeid><sourcerecordid>A803492033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-ea268be86b87253a949a20fff68f7f476ad2d6debfa58f9f34a4604192a4cce23</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobszd-AOk4I0Inflq2lzO4VSYKDhvvCmnbTIz22YmnaC_3sz5hTkXyTk8bzi8L0KHBI8Yk_isAZISzniKd1CfSCliIjnf_fPuoaH3SxwOYySjch_1glCwVNA-epxC4UwJnbFtBG0VTZ7AQdkpZ963Q6ujc2MbVQWqjuYmvllEE9usrDed8tGrgeh-Be45uqvBN6Ex7UbdLg7Qnobaq-HXPUAP04v55Cqe3V5eT8azuKSp7GIFVGSFykSRpTRhILkEirXWItOp5qmAilaiUoWGJNNSMw5cYE4kBV6WirIBOtn-u3L2Za18lzfGl6quoVV27XOGs4QEnOCAHv9Dl3bt2rDdJ4UxT3ASqNGWWkCtctNq2wVLQlWqMaVtlTZhPs4w45IGU4PgdCsonfXeKZ2vnGnAveUE55uU8t-UAnz0tcO6CK7-oN-ZsA-Z_ItM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085004505</pqid></control><display><type>article</type><title>Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering</title><source>PubMed Central(OpenAccess)</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Masuda, Taisei ; Oh, Minho ; Kobayashi, Equo</creator><creatorcontrib>Masuda, Taisei ; Oh, Minho ; Kobayashi, Equo</creatorcontrib><description>The fabrication of Ti-Mg composite biomaterials was investigated using spark plasma sintering (SPS) with varying Mg contents and sintering pressures. The effects of powder mixing, Mg addition, and sintering pressure on the microstructure and mechanical properties of the composite materials were systematically analyzed. Uniform dispersion of Mg within the Ti matrix was achieved, confirming the efficacy of ethanol-assisted ball milling for consistent mixing. The Young's modulus of the composite materials exhibited a linear decrease with increasing Mg content, with Ti-30vol%Mg and Ti-50vol%Mg demonstrating reduced modulus values compared to pure Ti. Based on density measurements, compression tests, and Young's modulus results, it was determined that the sinterability of Ti-30vol%Mg saturates at a sintering pressure of approximately 50 MPa. Moreover, our immersion tests in physiological saline underscore the profound significance of our findings. Ti-30vol%Mg maintained compressive strength above that of cortical bone for 6-to-10 days, with mechanical integrity improving under higher sintering pressures. These findings mark a significant leap towards the development of Ti-Mg composite biomaterials with tailored mechanical properties, thereby enhancing biocompatibility and osseointegration for a wide range of biomedical applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17143470</identifier><identifier>PMID: 39063762</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Ball milling ; Biocompatibility ; Biological products ; Biomedical materials ; Composite materials ; Compression tests ; Compressive strength ; Ethanol ; Fractures ; Magnesium ; Mechanical properties ; Modulus of elasticity ; Particle size ; Physiological aspects ; Plasma sintering ; Porous materials ; Powder metallurgy ; Powders ; Pressure effects ; Sinterability ; Sintering ; Sintering (powder metallurgy) ; Spark plasma sintering ; Stainless steel ; Stress concentration ; Titanium alloys ; Transplants &amp; implants</subject><ispartof>Materials, 2024-07, Vol.17 (14), p.3470</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-ea268be86b87253a949a20fff68f7f476ad2d6debfa58f9f34a4604192a4cce23</cites><orcidid>0000-0003-0635-163X ; 0000-0001-8043-5044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39063762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masuda, Taisei</creatorcontrib><creatorcontrib>Oh, Minho</creatorcontrib><creatorcontrib>Kobayashi, Equo</creatorcontrib><title>Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The fabrication of Ti-Mg composite biomaterials was investigated using spark plasma sintering (SPS) with varying Mg contents and sintering pressures. The effects of powder mixing, Mg addition, and sintering pressure on the microstructure and mechanical properties of the composite materials were systematically analyzed. Uniform dispersion of Mg within the Ti matrix was achieved, confirming the efficacy of ethanol-assisted ball milling for consistent mixing. The Young's modulus of the composite materials exhibited a linear decrease with increasing Mg content, with Ti-30vol%Mg and Ti-50vol%Mg demonstrating reduced modulus values compared to pure Ti. Based on density measurements, compression tests, and Young's modulus results, it was determined that the sinterability of Ti-30vol%Mg saturates at a sintering pressure of approximately 50 MPa. Moreover, our immersion tests in physiological saline underscore the profound significance of our findings. Ti-30vol%Mg maintained compressive strength above that of cortical bone for 6-to-10 days, with mechanical integrity improving under higher sintering pressures. These findings mark a significant leap towards the development of Ti-Mg composite biomaterials with tailored mechanical properties, thereby enhancing biocompatibility and osseointegration for a wide range of biomedical applications.</description><subject>Analysis</subject><subject>Ball milling</subject><subject>Biocompatibility</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Ethanol</subject><subject>Fractures</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Particle size</subject><subject>Physiological aspects</subject><subject>Plasma sintering</subject><subject>Porous materials</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Pressure effects</subject><subject>Sinterability</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Titanium alloys</subject><subject>Transplants &amp; implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LwzAUhoMobszd-AOk4I0Inflq2lzO4VSYKDhvvCmnbTIz22YmnaC_3sz5hTkXyTk8bzi8L0KHBI8Yk_isAZISzniKd1CfSCliIjnf_fPuoaH3SxwOYySjch_1glCwVNA-epxC4UwJnbFtBG0VTZ7AQdkpZ963Q6ujc2MbVQWqjuYmvllEE9usrDed8tGrgeh-Be45uqvBN6Ex7UbdLg7Qnobaq-HXPUAP04v55Cqe3V5eT8azuKSp7GIFVGSFykSRpTRhILkEirXWItOp5qmAilaiUoWGJNNSMw5cYE4kBV6WirIBOtn-u3L2Za18lzfGl6quoVV27XOGs4QEnOCAHv9Dl3bt2rDdJ4UxT3ASqNGWWkCtctNq2wVLQlWqMaVtlTZhPs4w45IGU4PgdCsonfXeKZ2vnGnAveUE55uU8t-UAnz0tcO6CK7-oN-ZsA-Z_ItM</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Masuda, Taisei</creator><creator>Oh, Minho</creator><creator>Kobayashi, Equo</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0635-163X</orcidid><orcidid>https://orcid.org/0000-0001-8043-5044</orcidid></search><sort><creationdate>20240713</creationdate><title>Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering</title><author>Masuda, Taisei ; Oh, Minho ; Kobayashi, Equo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-ea268be86b87253a949a20fff68f7f476ad2d6debfa58f9f34a4604192a4cce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Ball milling</topic><topic>Biocompatibility</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Ethanol</topic><topic>Fractures</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Particle size</topic><topic>Physiological aspects</topic><topic>Plasma sintering</topic><topic>Porous materials</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Pressure effects</topic><topic>Sinterability</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Titanium alloys</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Taisei</creatorcontrib><creatorcontrib>Oh, Minho</creatorcontrib><creatorcontrib>Kobayashi, Equo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Taisei</au><au>Oh, Minho</au><au>Kobayashi, Equo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-07-13</date><risdate>2024</risdate><volume>17</volume><issue>14</issue><spage>3470</spage><pages>3470-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The fabrication of Ti-Mg composite biomaterials was investigated using spark plasma sintering (SPS) with varying Mg contents and sintering pressures. The effects of powder mixing, Mg addition, and sintering pressure on the microstructure and mechanical properties of the composite materials were systematically analyzed. Uniform dispersion of Mg within the Ti matrix was achieved, confirming the efficacy of ethanol-assisted ball milling for consistent mixing. The Young's modulus of the composite materials exhibited a linear decrease with increasing Mg content, with Ti-30vol%Mg and Ti-50vol%Mg demonstrating reduced modulus values compared to pure Ti. Based on density measurements, compression tests, and Young's modulus results, it was determined that the sinterability of Ti-30vol%Mg saturates at a sintering pressure of approximately 50 MPa. Moreover, our immersion tests in physiological saline underscore the profound significance of our findings. Ti-30vol%Mg maintained compressive strength above that of cortical bone for 6-to-10 days, with mechanical integrity improving under higher sintering pressures. These findings mark a significant leap towards the development of Ti-Mg composite biomaterials with tailored mechanical properties, thereby enhancing biocompatibility and osseointegration for a wide range of biomedical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39063762</pmid><doi>10.3390/ma17143470</doi><orcidid>https://orcid.org/0000-0003-0635-163X</orcidid><orcidid>https://orcid.org/0000-0001-8043-5044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-07, Vol.17 (14), p.3470
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3085119210
source PubMed Central(OpenAccess); PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Analysis
Ball milling
Biocompatibility
Biological products
Biomedical materials
Composite materials
Compression tests
Compressive strength
Ethanol
Fractures
Magnesium
Mechanical properties
Modulus of elasticity
Particle size
Physiological aspects
Plasma sintering
Porous materials
Powder metallurgy
Powders
Pressure effects
Sinterability
Sintering
Sintering (powder metallurgy)
Spark plasma sintering
Stainless steel
Stress concentration
Titanium alloys
Transplants & implants
title Fabrication and Characterization of Biomedical Ti-Mg Composites via Spark Plasma Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Characterization%20of%20Biomedical%20Ti-Mg%20Composites%20via%20Spark%20Plasma%20Sintering&rft.jtitle=Materials&rft.au=Masuda,%20Taisei&rft.date=2024-07-13&rft.volume=17&rft.issue=14&rft.spage=3470&rft.pages=3470-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17143470&rft_dat=%3Cgale_proqu%3EA803492033%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085004505&rft_id=info:pmid/39063762&rft_galeid=A803492033&rfr_iscdi=true