Single-cell omics: experimental workflow, data analyses and applications
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and int...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2025, Vol.68 (1), p.5-102 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Science China. Life sciences |
container_volume | 68 |
creator | Sun, Fengying Li, Haoyan Sun, Dongqing Fu, Shaliu Gu, Lei Shao, Xin Wang, Qinqin Dong, Xin Duan, Bin Xing, Feiyang Wu, Jun Xiao, Minmin Zhao, Fangqing Han, Jing-Dong J. Liu, Qi Fan, Xiaohui Li, Chen Wang, Chenfei Shi, Tieliu |
description | Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis. |
doi_str_mv | 10.1007/s11427-023-2561-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085117117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085117117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-e2f094e880fa3ac276f001972e6fe62bb003daa0f114856543724c430bce04483</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMottT-AC-y4MWD0cnHJllvUtQKggf1HNLd2bJ1v9zsUvvvTWlVEAyBDOSZd-Z9CTllcMUA9LVnTHJNgQvKY8UoHJAxMyqhzJjkMNRKS6oFxCMy9X4F4QgBXOtjMhIJKFAsHpP5S1EvS6QplmXUVEXqbyL8bLErKqx7V0brpnvPy2Z9GWWud5GrXbnx6EORRa5tyyJ1fdHU_oQc5a70ON2_E_J2f_c6m9On54fH2e0TTXkse4o8h0SiMZA74VKuVQ7AEs1R5aj4YhG2zJyDPLgzsYql0FymUsAiRZDSiAm52Om2XfMxoO9tVfjt9q7GZvBWgIkZ0-EG9PwPumqGLhgIFIvBcCa0CBTbUWnXeN9hbttg3nUby8Buk7a7pG1I2m6TthB6zvbKw6LC7KfjO9cA8B3gw1e9xO539P-qX02ihqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150821373</pqid></control><display><type>article</type><title>Single-cell omics: experimental workflow, data analyses and applications</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Fengying ; Li, Haoyan ; Sun, Dongqing ; Fu, Shaliu ; Gu, Lei ; Shao, Xin ; Wang, Qinqin ; Dong, Xin ; Duan, Bin ; Xing, Feiyang ; Wu, Jun ; Xiao, Minmin ; Zhao, Fangqing ; Han, Jing-Dong J. ; Liu, Qi ; Fan, Xiaohui ; Li, Chen ; Wang, Chenfei ; Shi, Tieliu</creator><creatorcontrib>Sun, Fengying ; Li, Haoyan ; Sun, Dongqing ; Fu, Shaliu ; Gu, Lei ; Shao, Xin ; Wang, Qinqin ; Dong, Xin ; Duan, Bin ; Xing, Feiyang ; Wu, Jun ; Xiao, Minmin ; Zhao, Fangqing ; Han, Jing-Dong J. ; Liu, Qi ; Fan, Xiaohui ; Li, Chen ; Wang, Chenfei ; Shi, Tieliu</creatorcontrib><description>Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.</description><identifier>ISSN: 1674-7305</identifier><identifier>ISSN: 1869-1889</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-023-2561-0</identifier><identifier>PMID: 39060615</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Animals ; Biomedical and Life Sciences ; CRISPR ; Data Analysis ; Genomics - methods ; Humans ; Information processing ; Life Sciences ; Metabolomics - methods ; Phenotypes ; Proteomes ; Proteomics - methods ; Review ; Single-Cell Analysis - methods ; Workflow</subject><ispartof>Science China. Life sciences, 2025, Vol.68 (1), p.5-102</ispartof><rights>Science China Press 2024</rights><rights>2024. Science China Press.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-e2f094e880fa3ac276f001972e6fe62bb003daa0f114856543724c430bce04483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-023-2561-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-023-2561-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39060615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Fengying</creatorcontrib><creatorcontrib>Li, Haoyan</creatorcontrib><creatorcontrib>Sun, Dongqing</creatorcontrib><creatorcontrib>Fu, Shaliu</creatorcontrib><creatorcontrib>Gu, Lei</creatorcontrib><creatorcontrib>Shao, Xin</creatorcontrib><creatorcontrib>Wang, Qinqin</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Duan, Bin</creatorcontrib><creatorcontrib>Xing, Feiyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Xiao, Minmin</creatorcontrib><creatorcontrib>Zhao, Fangqing</creatorcontrib><creatorcontrib>Han, Jing-Dong J.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Wang, Chenfei</creatorcontrib><creatorcontrib>Shi, Tieliu</creatorcontrib><title>Single-cell omics: experimental workflow, data analyses and applications</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>Data Analysis</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Metabolomics - methods</subject><subject>Phenotypes</subject><subject>Proteomes</subject><subject>Proteomics - methods</subject><subject>Review</subject><subject>Single-Cell Analysis - methods</subject><subject>Workflow</subject><issn>1674-7305</issn><issn>1869-1889</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMottT-AC-y4MWD0cnHJllvUtQKggf1HNLd2bJ1v9zsUvvvTWlVEAyBDOSZd-Z9CTllcMUA9LVnTHJNgQvKY8UoHJAxMyqhzJjkMNRKS6oFxCMy9X4F4QgBXOtjMhIJKFAsHpP5S1EvS6QplmXUVEXqbyL8bLErKqx7V0brpnvPy2Z9GWWud5GrXbnx6EORRa5tyyJ1fdHU_oQc5a70ON2_E_J2f_c6m9On54fH2e0TTXkse4o8h0SiMZA74VKuVQ7AEs1R5aj4YhG2zJyDPLgzsYql0FymUsAiRZDSiAm52Om2XfMxoO9tVfjt9q7GZvBWgIkZ0-EG9PwPumqGLhgIFIvBcCa0CBTbUWnXeN9hbttg3nUby8Buk7a7pG1I2m6TthB6zvbKw6LC7KfjO9cA8B3gw1e9xO539P-qX02ihqc</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Sun, Fengying</creator><creator>Li, Haoyan</creator><creator>Sun, Dongqing</creator><creator>Fu, Shaliu</creator><creator>Gu, Lei</creator><creator>Shao, Xin</creator><creator>Wang, Qinqin</creator><creator>Dong, Xin</creator><creator>Duan, Bin</creator><creator>Xing, Feiyang</creator><creator>Wu, Jun</creator><creator>Xiao, Minmin</creator><creator>Zhao, Fangqing</creator><creator>Han, Jing-Dong J.</creator><creator>Liu, Qi</creator><creator>Fan, Xiaohui</creator><creator>Li, Chen</creator><creator>Wang, Chenfei</creator><creator>Shi, Tieliu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>2025</creationdate><title>Single-cell omics: experimental workflow, data analyses and applications</title><author>Sun, Fengying ; Li, Haoyan ; Sun, Dongqing ; Fu, Shaliu ; Gu, Lei ; Shao, Xin ; Wang, Qinqin ; Dong, Xin ; Duan, Bin ; Xing, Feiyang ; Wu, Jun ; Xiao, Minmin ; Zhao, Fangqing ; Han, Jing-Dong J. ; Liu, Qi ; Fan, Xiaohui ; Li, Chen ; Wang, Chenfei ; Shi, Tieliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-e2f094e880fa3ac276f001972e6fe62bb003daa0f114856543724c430bce04483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>Data Analysis</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Metabolomics - methods</topic><topic>Phenotypes</topic><topic>Proteomes</topic><topic>Proteomics - methods</topic><topic>Review</topic><topic>Single-Cell Analysis - methods</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Fengying</creatorcontrib><creatorcontrib>Li, Haoyan</creatorcontrib><creatorcontrib>Sun, Dongqing</creatorcontrib><creatorcontrib>Fu, Shaliu</creatorcontrib><creatorcontrib>Gu, Lei</creatorcontrib><creatorcontrib>Shao, Xin</creatorcontrib><creatorcontrib>Wang, Qinqin</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Duan, Bin</creatorcontrib><creatorcontrib>Xing, Feiyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Xiao, Minmin</creatorcontrib><creatorcontrib>Zhao, Fangqing</creatorcontrib><creatorcontrib>Han, Jing-Dong J.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Wang, Chenfei</creatorcontrib><creatorcontrib>Shi, Tieliu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Fengying</au><au>Li, Haoyan</au><au>Sun, Dongqing</au><au>Fu, Shaliu</au><au>Gu, Lei</au><au>Shao, Xin</au><au>Wang, Qinqin</au><au>Dong, Xin</au><au>Duan, Bin</au><au>Xing, Feiyang</au><au>Wu, Jun</au><au>Xiao, Minmin</au><au>Zhao, Fangqing</au><au>Han, Jing-Dong J.</au><au>Liu, Qi</au><au>Fan, Xiaohui</au><au>Li, Chen</au><au>Wang, Chenfei</au><au>Shi, Tieliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell omics: experimental workflow, data analyses and applications</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2025</date><risdate>2025</risdate><volume>68</volume><issue>1</issue><spage>5</spage><epage>102</epage><pages>5-102</pages><issn>1674-7305</issn><issn>1869-1889</issn><eissn>1869-1889</eissn><abstract>Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>39060615</pmid><doi>10.1007/s11427-023-2561-0</doi><tpages>98</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7305 |
ispartof | Science China. Life sciences, 2025, Vol.68 (1), p.5-102 |
issn | 1674-7305 1869-1889 1869-1889 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085117117 |
source | MEDLINE; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Animals Biomedical and Life Sciences CRISPR Data Analysis Genomics - methods Humans Information processing Life Sciences Metabolomics - methods Phenotypes Proteomes Proteomics - methods Review Single-Cell Analysis - methods Workflow |
title | Single-cell omics: experimental workflow, data analyses and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20omics:%20experimental%20workflow,%20data%20analyses%20and%20applications&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Sun,%20Fengying&rft.date=2025&rft.volume=68&rft.issue=1&rft.spage=5&rft.epage=102&rft.pages=5-102&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-023-2561-0&rft_dat=%3Cproquest_cross%3E3085117117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150821373&rft_id=info:pmid/39060615&rfr_iscdi=true |