Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis

Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2024-08, Vol.10 (8), p.5274-5289
Hauptverfasser: Zhang, Shichao, Liu, Yijiang, Xie, Yuhan, Ding, Chenchun, Zuo, Renjie, Guo, Zhenzhen, Qi, Shiyong, Fu, Tingting, Chen, Weibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5289
container_issue 8
container_start_page 5274
container_title ACS biomaterials science & engineering
container_volume 10
creator Zhang, Shichao
Liu, Yijiang
Xie, Yuhan
Ding, Chenchun
Zuo, Renjie
Guo, Zhenzhen
Qi, Shiyong
Fu, Tingting
Chen, Weibin
description Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein–protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.
doi_str_mv 10.1021/acsbiomaterials.4c00776
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084775809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084775809</sourcerecordid><originalsourceid>FETCH-LOGICAL-a162t-50e94d2899d183dbae0087099e0dad3b50c34e4cb41a003a4f0df19297f8f0c23</originalsourceid><addsrcrecordid>eNpdUctOwzAQjBBIIOg34COXlnXs1jYnSnlVVIBQOUdbZ9MGJXaxU6T-Cx-Lq3JAnHa0mt2Z3cmycw4DDjm_RBsXtW-xo1BjEwfSAig1OshOcqFE32ilD__g46wX4wcAcKGHUsqT7PuexIu8ftNCsWd0ft1gV_nQsju3QmcpssmK2tpiw263DhNi8xUFXG8ZupJN23bjfLfvXLGp62gZkpuSzQO6aEO97vxuaOyw2cY6sjf6ouSUPdGWPZBLArVjN4EwdmyyUwzsNfil84l8lh1ViUu933qavd_fzSeP_dnLw3QynvWRj_KuPwQyssy1MSXXolwgAWgFxhCUWIrFEKyQJO1CcgQQKCsoK25yoypdgc3FaXax37sO_nNDsSvaOlpqGnTkN7EQoKVSQw0mUcWemj5ffPhNSHfFgkOxi6P4F0fxG4f4AbTzhQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084775809</pqid></control><display><type>article</type><title>Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis</title><source>American Chemical Society Journals</source><creator>Zhang, Shichao ; Liu, Yijiang ; Xie, Yuhan ; Ding, Chenchun ; Zuo, Renjie ; Guo, Zhenzhen ; Qi, Shiyong ; Fu, Tingting ; Chen, Weibin</creator><creatorcontrib>Zhang, Shichao ; Liu, Yijiang ; Xie, Yuhan ; Ding, Chenchun ; Zuo, Renjie ; Guo, Zhenzhen ; Qi, Shiyong ; Fu, Tingting ; Chen, Weibin</creatorcontrib><description>Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein–protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.4c00776</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applications and Health</subject><ispartof>ACS biomaterials science &amp; engineering, 2024-08, Vol.10 (8), p.5274-5289</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2093-6861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.4c00776$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00776$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Liu, Yijiang</creatorcontrib><creatorcontrib>Xie, Yuhan</creatorcontrib><creatorcontrib>Ding, Chenchun</creatorcontrib><creatorcontrib>Zuo, Renjie</creatorcontrib><creatorcontrib>Guo, Zhenzhen</creatorcontrib><creatorcontrib>Qi, Shiyong</creatorcontrib><creatorcontrib>Fu, Tingting</creatorcontrib><creatorcontrib>Chen, Weibin</creatorcontrib><title>Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein–protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.</description><subject>Applications and Health</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdUctOwzAQjBBIIOg34COXlnXs1jYnSnlVVIBQOUdbZ9MGJXaxU6T-Cx-Lq3JAnHa0mt2Z3cmycw4DDjm_RBsXtW-xo1BjEwfSAig1OshOcqFE32ilD__g46wX4wcAcKGHUsqT7PuexIu8ftNCsWd0ft1gV_nQsju3QmcpssmK2tpiw263DhNi8xUFXG8ZupJN23bjfLfvXLGp62gZkpuSzQO6aEO97vxuaOyw2cY6sjf6ouSUPdGWPZBLArVjN4EwdmyyUwzsNfil84l8lh1ViUu933qavd_fzSeP_dnLw3QynvWRj_KuPwQyssy1MSXXolwgAWgFxhCUWIrFEKyQJO1CcgQQKCsoK25yoypdgc3FaXax37sO_nNDsSvaOlpqGnTkN7EQoKVSQw0mUcWemj5ffPhNSHfFgkOxi6P4F0fxG4f4AbTzhQY</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Zhang, Shichao</creator><creator>Liu, Yijiang</creator><creator>Xie, Yuhan</creator><creator>Ding, Chenchun</creator><creator>Zuo, Renjie</creator><creator>Guo, Zhenzhen</creator><creator>Qi, Shiyong</creator><creator>Fu, Tingting</creator><creator>Chen, Weibin</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2093-6861</orcidid></search><sort><creationdate>20240812</creationdate><title>Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis</title><author>Zhang, Shichao ; Liu, Yijiang ; Xie, Yuhan ; Ding, Chenchun ; Zuo, Renjie ; Guo, Zhenzhen ; Qi, Shiyong ; Fu, Tingting ; Chen, Weibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a162t-50e94d2899d183dbae0087099e0dad3b50c34e4cb41a003a4f0df19297f8f0c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications and Health</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Liu, Yijiang</creatorcontrib><creatorcontrib>Xie, Yuhan</creatorcontrib><creatorcontrib>Ding, Chenchun</creatorcontrib><creatorcontrib>Zuo, Renjie</creatorcontrib><creatorcontrib>Guo, Zhenzhen</creatorcontrib><creatorcontrib>Qi, Shiyong</creatorcontrib><creatorcontrib>Fu, Tingting</creatorcontrib><creatorcontrib>Chen, Weibin</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shichao</au><au>Liu, Yijiang</au><au>Xie, Yuhan</au><au>Ding, Chenchun</au><au>Zuo, Renjie</au><au>Guo, Zhenzhen</au><au>Qi, Shiyong</au><au>Fu, Tingting</au><au>Chen, Weibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2024-08-12</date><risdate>2024</risdate><volume>10</volume><issue>8</issue><spage>5274</spage><epage>5289</epage><pages>5274-5289</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein–protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsbiomaterials.4c00776</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2093-6861</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2024-08, Vol.10 (8), p.5274-5289
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_3084775809
source American Chemical Society Journals
subjects Applications and Health
title Fe3O4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe3O4@R837%20Nanoplatform%20Enhances%20Chemical%20Dynamic%20Therapy%20and%20Immunotherapy:%20Integrated%20Transcriptomic%20Analysis%20Reveals%20Key%20Genes%20in%20Breast%20Cancer%20Prognosis&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Zhang,%20Shichao&rft.date=2024-08-12&rft.volume=10&rft.issue=8&rft.spage=5274&rft.epage=5289&rft.pages=5274-5289&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.4c00776&rft_dat=%3Cproquest_acs_j%3E3084775809%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084775809&rft_id=info:pmid/&rfr_iscdi=true