Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB

Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-08, Vol.128 (31), p.7476-7485
Hauptverfasser: Rao, Deming, Zhu, Lin, Liu, Weiqiong, Guo, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7485
container_issue 31
container_start_page 7476
container_title The journal of physical chemistry. B
container_volume 128
creator Rao, Deming
Zhu, Lin
Liu, Weiqiong
Guo, Zhiyong
description Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.
doi_str_mv 10.1021/acs.jpcb.4c02073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084773800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084773800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-a6c0c0bb50290fdce76d10e2737aae9c702a2a172c160f3b87b2a6b37dbd4e593</originalsourceid><addsrcrecordid>eNp1kDtOxDAQhi0E4t1ToZQUZBnbSbwpeYMAISEeZTR2JhDkxIudFNtxBa7CQTgEJyGwCx3FaKb4_l-aj7EtDiMOgu-hCaPnidGjxIAAJRfYKk8FxMOoxfmdcchW2FoIzwAiFeNsma3IHFKeJHKV3V85S6a36KMrMk_Y1qGJXBUduV5bio_qMLFoqKG2i26ow7qt28fo4_3z9e2idNGpnRoXprbz2IaKPAaKHrQ-2GBLFdpAm_O9zu5Ojm8Pz-LL69Pzw_3LGAXPuxgzAwa0TkHkUJWGVFZyIKGkQqTcKBAokCtheAaV1GOlBWZaqlKXCaW5XGc7s96Jdy89ha5o6mDIWmzJ9aGQME6UkmOAAYUZarwLwVNVTHzdoJ8WHIpvm8Vgs_i2WcxtDpHteXuvGyr_Ar_6BmB3BvxEXe_b4dn_-74AVBKC7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084773800</pqid></control><display><type>article</type><title>Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rao, Deming ; Zhu, Lin ; Liu, Weiqiong ; Guo, Zhiyong</creator><creatorcontrib>Rao, Deming ; Zhu, Lin ; Liu, Weiqiong ; Guo, Zhiyong</creatorcontrib><description>Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c02073</identifier><identifier>PMID: 39051443</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical and Biochemical Systems and Processes ; Biocatalysis ; Glycosyltransferases - chemistry ; Glycosyltransferases - metabolism ; Hydrogen Bonding ; Molecular Dynamics Simulation ; Quantum Theory</subject><ispartof>The journal of physical chemistry. B, 2024-08, Vol.128 (31), p.7476-7485</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a219t-a6c0c0bb50290fdce76d10e2737aae9c702a2a172c160f3b87b2a6b37dbd4e593</cites><orcidid>0009-0003-4334-2713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c02073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c02073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39051443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Deming</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Liu, Weiqiong</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><title>Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.</description><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Biocatalysis</subject><subject>Glycosyltransferases - chemistry</subject><subject>Glycosyltransferases - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Molecular Dynamics Simulation</subject><subject>Quantum Theory</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtOxDAQhi0E4t1ToZQUZBnbSbwpeYMAISEeZTR2JhDkxIudFNtxBa7CQTgEJyGwCx3FaKb4_l-aj7EtDiMOgu-hCaPnidGjxIAAJRfYKk8FxMOoxfmdcchW2FoIzwAiFeNsma3IHFKeJHKV3V85S6a36KMrMk_Y1qGJXBUduV5bio_qMLFoqKG2i26ow7qt28fo4_3z9e2idNGpnRoXprbz2IaKPAaKHrQ-2GBLFdpAm_O9zu5Ojm8Pz-LL69Pzw_3LGAXPuxgzAwa0TkHkUJWGVFZyIKGkQqTcKBAokCtheAaV1GOlBWZaqlKXCaW5XGc7s96Jdy89ha5o6mDIWmzJ9aGQME6UkmOAAYUZarwLwVNVTHzdoJ8WHIpvm8Vgs_i2WcxtDpHteXuvGyr_Ar_6BmB3BvxEXe_b4dn_-74AVBKC7g</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Rao, Deming</creator><creator>Zhu, Lin</creator><creator>Liu, Weiqiong</creator><creator>Guo, Zhiyong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-4334-2713</orcidid></search><sort><creationdate>20240808</creationdate><title>Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB</title><author>Rao, Deming ; Zhu, Lin ; Liu, Weiqiong ; Guo, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-a6c0c0bb50290fdce76d10e2737aae9c702a2a172c160f3b87b2a6b37dbd4e593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Biocatalysis</topic><topic>Glycosyltransferases - chemistry</topic><topic>Glycosyltransferases - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Molecular Dynamics Simulation</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Deming</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Liu, Weiqiong</creatorcontrib><creatorcontrib>Guo, Zhiyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Deming</au><au>Zhu, Lin</au><au>Liu, Weiqiong</au><au>Guo, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-08-08</date><risdate>2024</risdate><volume>128</volume><issue>31</issue><spage>7476</spage><epage>7485</epage><pages>7476-7485</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety’s anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common S N i-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39051443</pmid><doi>10.1021/acs.jpcb.4c02073</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0003-4334-2713</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-08, Vol.128 (31), p.7476-7485
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_proquest_miscellaneous_3084773800
source MEDLINE; American Chemical Society Journals
subjects B: Biophysical and Biochemical Systems and Processes
Biocatalysis
Glycosyltransferases - chemistry
Glycosyltransferases - metabolism
Hydrogen Bonding
Molecular Dynamics Simulation
Quantum Theory
title Molecular Mechanism of Double-Displacement Retaining β‑Kdo Glycosyltransferase WbbB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20Double-Displacement%20Retaining%20%CE%B2%E2%80%91Kdo%20Glycosyltransferase%20WbbB&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Rao,%20Deming&rft.date=2024-08-08&rft.volume=128&rft.issue=31&rft.spage=7476&rft.epage=7485&rft.pages=7476-7485&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c02073&rft_dat=%3Cproquest_cross%3E3084773800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084773800&rft_id=info:pmid/39051443&rfr_iscdi=true