FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS

Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2024-12, Vol.47 (12), p.4630-4650
Hauptverfasser: Luo, He, Guan, Yuhan, Zhang, Zhuo, Zhang, Zihui, Zhang, Zhihong, Li, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4650
container_issue 12
container_start_page 4630
container_title Plant, cell and environment
container_volume 47
creator Luo, He
Guan, Yuhan
Zhang, Zhuo
Zhang, Zihui
Zhang, Zhihong
Li, He
description Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold‐tolerant strawberry resources ‘Fragaria mandschurica’ and ‘Fragaria nipponica’. In conclusion, our study reveals the molecular mechanism of FveDREB1B‐FveSCL23‐FveDELLA module and FveDREB1B‐FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources. Summary Statement FveDREB1B activates FveSCL23, and both interact with FveDELLA to inhibit the initiation of reproductive growth, respectively. FveDREB1B activates FveCHS and promotes anthocyanin accumulation in leaves. Both pathways contribute to the cold tolerance of woodland strawberry.
doi_str_mv 10.1111/pce.15052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084773414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123963418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2432-9337ddb72ea5658624db51274f51aa780eefd71326be5437bc24ea0a13f5ae2f3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK0e_AOy4EUPqfuZbY42VisUFD_OyyaZlJS0W3eTlvx7V1s9CO5l2OGZh5kXoXNKhjS8m3UOQyqJZAeoT3ksI04EOUR9QgWJlEpoD514vyAkNFRyjHo8IZKKWPUR3G_g7mUypmNcLdfObsDj3NYFbmwNzqxywLbEW2uL2qwK7Btnthk41-Gsw2vrq6baQN1hB_O2Nk21muNgfE1njOOvgfBJp6-n6Kg0tYezfR2g9_vJWzqNZk8Pj-ntLMqZ4CxKOFdFkSkGRsZyFDNRZJIyJUpJjVEjAlAWinIWZyAFV1kYA0MM5aU0wEo-QFc7b7jkowXf6GXlc6jD7mBbrzkZCaW4oCKgl3_QhW3dKmynOWU8iQM1CtT1jsqd9d5BqdeuWhrXaUr0V_Y6ZK-_sw_sxd7YZksofsmfsANwswO2VQ3d_yb9nE52yk8axowQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123963418</pqid></control><display><type>article</type><title>FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Luo, He ; Guan, Yuhan ; Zhang, Zhuo ; Zhang, Zihui ; Zhang, Zhihong ; Li, He</creator><creatorcontrib>Luo, He ; Guan, Yuhan ; Zhang, Zhuo ; Zhang, Zihui ; Zhang, Zhihong ; Li, He</creatorcontrib><description>Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold‐tolerant strawberry resources ‘Fragaria mandschurica’ and ‘Fragaria nipponica’. In conclusion, our study reveals the molecular mechanism of FveDREB1B‐FveSCL23‐FveDELLA module and FveDREB1B‐FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources. Summary Statement FveDREB1B activates FveSCL23, and both interact with FveDELLA to inhibit the initiation of reproductive growth, respectively. FveDREB1B activates FveCHS and promotes anthocyanin accumulation in leaves. Both pathways contribute to the cold tolerance of woodland strawberry.</description><identifier>ISSN: 0140-7791</identifier><identifier>ISSN: 1365-3040</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.15052</identifier><identifier>PMID: 39051467</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>anthocyanin ; Anthocyanins ; Anthocyanins - metabolism ; CBF protein ; CBFs/DREB1s ; Cold ; Cold flow ; cold stress ; Cold Temperature ; Cold tolerance ; Cold treatment ; Cold-Shock Response - genetics ; Cold-Shock Response - physiology ; Cultivation ; DELLA ; Diploids ; Flowering ; Fragaria - genetics ; Fragaria - metabolism ; Fragaria - physiology ; Fragaria vesca ; Fruit cultivation ; Fruits ; Gene Expression Regulation, Plant ; Germplasm ; Modules ; Molecular modelling ; Plant layout ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants (botany) ; Plants, Genetically Modified ; Regulatory mechanisms (biology) ; Strawberries ; strawberry resources ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Woodlands</subject><ispartof>Plant, cell and environment, 2024-12, Vol.47 (12), p.4630-4650</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2432-9337ddb72ea5658624db51274f51aa780eefd71326be5437bc24ea0a13f5ae2f3</cites><orcidid>0000-0002-1507-1536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.15052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.15052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39051467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, He</creatorcontrib><creatorcontrib>Guan, Yuhan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Zihui</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><title>FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold‐tolerant strawberry resources ‘Fragaria mandschurica’ and ‘Fragaria nipponica’. In conclusion, our study reveals the molecular mechanism of FveDREB1B‐FveSCL23‐FveDELLA module and FveDREB1B‐FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources. Summary Statement FveDREB1B activates FveSCL23, and both interact with FveDELLA to inhibit the initiation of reproductive growth, respectively. FveDREB1B activates FveCHS and promotes anthocyanin accumulation in leaves. Both pathways contribute to the cold tolerance of woodland strawberry.</description><subject>anthocyanin</subject><subject>Anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>CBF protein</subject><subject>CBFs/DREB1s</subject><subject>Cold</subject><subject>Cold flow</subject><subject>cold stress</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>Cold treatment</subject><subject>Cold-Shock Response - genetics</subject><subject>Cold-Shock Response - physiology</subject><subject>Cultivation</subject><subject>DELLA</subject><subject>Diploids</subject><subject>Flowering</subject><subject>Fragaria - genetics</subject><subject>Fragaria - metabolism</subject><subject>Fragaria - physiology</subject><subject>Fragaria vesca</subject><subject>Fruit cultivation</subject><subject>Fruits</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germplasm</subject><subject>Modules</subject><subject>Molecular modelling</subject><subject>Plant layout</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Regulatory mechanisms (biology)</subject><subject>Strawberries</subject><subject>strawberry resources</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Woodlands</subject><issn>0140-7791</issn><issn>1365-3040</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK0e_AOy4EUPqfuZbY42VisUFD_OyyaZlJS0W3eTlvx7V1s9CO5l2OGZh5kXoXNKhjS8m3UOQyqJZAeoT3ksI04EOUR9QgWJlEpoD514vyAkNFRyjHo8IZKKWPUR3G_g7mUypmNcLdfObsDj3NYFbmwNzqxywLbEW2uL2qwK7Btnthk41-Gsw2vrq6baQN1hB_O2Nk21muNgfE1njOOvgfBJp6-n6Kg0tYezfR2g9_vJWzqNZk8Pj-ntLMqZ4CxKOFdFkSkGRsZyFDNRZJIyJUpJjVEjAlAWinIWZyAFV1kYA0MM5aU0wEo-QFc7b7jkowXf6GXlc6jD7mBbrzkZCaW4oCKgl3_QhW3dKmynOWU8iQM1CtT1jsqd9d5BqdeuWhrXaUr0V_Y6ZK-_sw_sxd7YZksofsmfsANwswO2VQ3d_yb9nE52yk8axowQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Luo, He</creator><creator>Guan, Yuhan</creator><creator>Zhang, Zhuo</creator><creator>Zhang, Zihui</creator><creator>Zhang, Zhihong</creator><creator>Li, He</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1507-1536</orcidid></search><sort><creationdate>202412</creationdate><title>FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS</title><author>Luo, He ; Guan, Yuhan ; Zhang, Zhuo ; Zhang, Zihui ; Zhang, Zhihong ; Li, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2432-9337ddb72ea5658624db51274f51aa780eefd71326be5437bc24ea0a13f5ae2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anthocyanin</topic><topic>Anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>CBF protein</topic><topic>CBFs/DREB1s</topic><topic>Cold</topic><topic>Cold flow</topic><topic>cold stress</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>Cold treatment</topic><topic>Cold-Shock Response - genetics</topic><topic>Cold-Shock Response - physiology</topic><topic>Cultivation</topic><topic>DELLA</topic><topic>Diploids</topic><topic>Flowering</topic><topic>Fragaria - genetics</topic><topic>Fragaria - metabolism</topic><topic>Fragaria - physiology</topic><topic>Fragaria vesca</topic><topic>Fruit cultivation</topic><topic>Fruits</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germplasm</topic><topic>Modules</topic><topic>Molecular modelling</topic><topic>Plant layout</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Regulatory mechanisms (biology)</topic><topic>Strawberries</topic><topic>strawberry resources</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Woodlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, He</creatorcontrib><creatorcontrib>Guan, Yuhan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Zihui</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, He</au><au>Guan, Yuhan</au><au>Zhang, Zhuo</au><au>Zhang, Zihui</au><au>Zhang, Zhihong</au><au>Li, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2024-12</date><risdate>2024</risdate><volume>47</volume><issue>12</issue><spage>4630</spage><epage>4650</epage><pages>4630-4650</pages><issn>0140-7791</issn><issn>1365-3040</issn><eissn>1365-3040</eissn><abstract>Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold‐tolerant strawberry resources ‘Fragaria mandschurica’ and ‘Fragaria nipponica’. In conclusion, our study reveals the molecular mechanism of FveDREB1B‐FveSCL23‐FveDELLA module and FveDREB1B‐FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources. Summary Statement FveDREB1B activates FveSCL23, and both interact with FveDELLA to inhibit the initiation of reproductive growth, respectively. FveDREB1B activates FveCHS and promotes anthocyanin accumulation in leaves. Both pathways contribute to the cold tolerance of woodland strawberry.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39051467</pmid><doi>10.1111/pce.15052</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1507-1536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2024-12, Vol.47 (12), p.4630-4650
issn 0140-7791
1365-3040
1365-3040
language eng
recordid cdi_proquest_miscellaneous_3084773414
source MEDLINE; Wiley Online Library All Journals
subjects anthocyanin
Anthocyanins
Anthocyanins - metabolism
CBF protein
CBFs/DREB1s
Cold
Cold flow
cold stress
Cold Temperature
Cold tolerance
Cold treatment
Cold-Shock Response - genetics
Cold-Shock Response - physiology
Cultivation
DELLA
Diploids
Flowering
Fragaria - genetics
Fragaria - metabolism
Fragaria - physiology
Fragaria vesca
Fruit cultivation
Fruits
Gene Expression Regulation, Plant
Germplasm
Modules
Molecular modelling
Plant layout
Plant Proteins - genetics
Plant Proteins - metabolism
Plants (botany)
Plants, Genetically Modified
Regulatory mechanisms (biology)
Strawberries
strawberry resources
Transcription Factors - genetics
Transcription Factors - metabolism
Woodlands
title FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FveDREB1B%20improves%20cold%20tolerance%20of%20woodland%20strawberry%20by%20positively%20regulating%20FveSCL23%20and%20FveCHS&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Luo,%20He&rft.date=2024-12&rft.volume=47&rft.issue=12&rft.spage=4630&rft.epage=4650&rft.pages=4630-4650&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.15052&rft_dat=%3Cproquest_cross%3E3123963418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123963418&rft_id=info:pmid/39051467&rfr_iscdi=true