Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy

Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 2024-09, Vol.158, p.155977, Article 155977
Hauptverfasser: Shu, Songren, Cui, Hao, Liu, Zirui, Zhang, Hang, Yang, Yicheng, Chen, Xiao, Zeng, Zhiwei, Du, Leilei, Fu, Mengxia, Yang, Ziang, Wang, Peizhi, Wang, Chuangshi, Gao, Huimin, Yang, Qiaoxi, Lin, Xiaojun, Yang, Tianshuo, Chen, Zhice, Wu, Sijin, Wang, Xiaohu, Zhao, Ruojin, Hu, Shengshou, Song, Jiangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 155977
container_title Metabolism, clinical and experimental
container_volume 158
creator Shu, Songren
Cui, Hao
Liu, Zirui
Zhang, Hang
Yang, Yicheng
Chen, Xiao
Zeng, Zhiwei
Du, Leilei
Fu, Mengxia
Yang, Ziang
Wang, Peizhi
Wang, Chuangshi
Gao, Huimin
Yang, Qiaoxi
Lin, Xiaojun
Yang, Tianshuo
Chen, Zhice
Wu, Sijin
Wang, Xiaohu
Zhao, Ruojin
Hu, Shengshou
Song, Jiangping
description Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM. [Display omitted] •Diabetes promotes non-diabetic heart failure after heart transplantation.•The increase in acyl-CoA is the metabolic hallmark of diabetic cardiomyopathy.•Knockdown of RCAN1 improved the cardiac function and structure of db/db mice.•RCAN1-p-Drp1 Ser616 axis contributes to mitochondrial dysfunction in cardiomyocytes.
doi_str_mv 10.1016/j.metabol.2024.155977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084771962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002604952400204X</els_id><sourcerecordid>3084771962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-6d34a24a4ef610057382e67c7905b9300b1f322258fdb95018ec326ce54319933</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EotvCTwD5yCXL2I7t-ISqVYFKFUh8nC3HnlCvkjjYSaX992SVhSunuTzzvjMPIW8Y7Bkw9f64H3B2ber3HHi9Z1IarZ-RHZOCV40CeE52AFxVUBt5Ra5LOQKA1o16Sa6EASmUgR359X2ZpoylxDTS1NFvh9svjLq-x6foZgy0j1MM1Hm_DEvv5jPmxkCHOCf_mMaQo-tpF7eAONIQXYtz9NS7HGIaTmly8-PpFXnRub7g68u8IT8_3v04fK4evn66P9w-VJ7XYq5UELXjtauxUwxAatFwVNrr9eDWCICWdYJzLpsutEYCa9ALrjzKWjBjhLgh77bcKaffC5bZDrF47Hs3YlqKFdDUWjOj-IrKDfU5lZKxs1OOg8sny8CeHdujvTi2Z8d2c7zuvb1ULO2A4d_WX6kr8GEDcH30KWK2xUccPYaY0c82pPifij81GZAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084771962</pqid></control><display><type>article</type><title>Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shu, Songren ; Cui, Hao ; Liu, Zirui ; Zhang, Hang ; Yang, Yicheng ; Chen, Xiao ; Zeng, Zhiwei ; Du, Leilei ; Fu, Mengxia ; Yang, Ziang ; Wang, Peizhi ; Wang, Chuangshi ; Gao, Huimin ; Yang, Qiaoxi ; Lin, Xiaojun ; Yang, Tianshuo ; Chen, Zhice ; Wu, Sijin ; Wang, Xiaohu ; Zhao, Ruojin ; Hu, Shengshou ; Song, Jiangping</creator><creatorcontrib>Shu, Songren ; Cui, Hao ; Liu, Zirui ; Zhang, Hang ; Yang, Yicheng ; Chen, Xiao ; Zeng, Zhiwei ; Du, Leilei ; Fu, Mengxia ; Yang, Ziang ; Wang, Peizhi ; Wang, Chuangshi ; Gao, Huimin ; Yang, Qiaoxi ; Lin, Xiaojun ; Yang, Tianshuo ; Chen, Zhice ; Wu, Sijin ; Wang, Xiaohu ; Zhao, Ruojin ; Hu, Shengshou ; Song, Jiangping</creatorcontrib><description>Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM. [Display omitted] •Diabetes promotes non-diabetic heart failure after heart transplantation.•The increase in acyl-CoA is the metabolic hallmark of diabetic cardiomyopathy.•Knockdown of RCAN1 improved the cardiac function and structure of db/db mice.•RCAN1-p-Drp1 Ser616 axis contributes to mitochondrial dysfunction in cardiomyocytes.</description><identifier>ISSN: 0026-0495</identifier><identifier>ISSN: 1532-8600</identifier><identifier>EISSN: 1532-8600</identifier><identifier>DOI: 10.1016/j.metabol.2024.155977</identifier><identifier>PMID: 39053690</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyl-CoA ; Animals ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Diabetic Cardiomyopathies - metabolism ; Diabetic Cardiomyopathies - pathology ; Diabetic cardiomyopathy ; Female ; Heart Failure - etiology ; Heart Failure - metabolism ; Heart Transplantation ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Lipid accumulation ; Lipid Metabolism - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Mitochondria fission ; Mitochondrial Dynamics - physiology ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Myocardium - metabolism ; Myocardium - pathology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; RCAN1</subject><ispartof>Metabolism, clinical and experimental, 2024-09, Vol.158, p.155977, Article 155977</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-6d34a24a4ef610057382e67c7905b9300b1f322258fdb95018ec326ce54319933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.metabol.2024.155977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39053690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Songren</creatorcontrib><creatorcontrib>Cui, Hao</creatorcontrib><creatorcontrib>Liu, Zirui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Yang, Yicheng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zeng, Zhiwei</creatorcontrib><creatorcontrib>Du, Leilei</creatorcontrib><creatorcontrib>Fu, Mengxia</creatorcontrib><creatorcontrib>Yang, Ziang</creatorcontrib><creatorcontrib>Wang, Peizhi</creatorcontrib><creatorcontrib>Wang, Chuangshi</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Yang, Qiaoxi</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Yang, Tianshuo</creatorcontrib><creatorcontrib>Chen, Zhice</creatorcontrib><creatorcontrib>Wu, Sijin</creatorcontrib><creatorcontrib>Wang, Xiaohu</creatorcontrib><creatorcontrib>Zhao, Ruojin</creatorcontrib><creatorcontrib>Hu, Shengshou</creatorcontrib><creatorcontrib>Song, Jiangping</creatorcontrib><title>Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy</title><title>Metabolism, clinical and experimental</title><addtitle>Metabolism</addtitle><description>Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM. [Display omitted] •Diabetes promotes non-diabetic heart failure after heart transplantation.•The increase in acyl-CoA is the metabolic hallmark of diabetic cardiomyopathy.•Knockdown of RCAN1 improved the cardiac function and structure of db/db mice.•RCAN1-p-Drp1 Ser616 axis contributes to mitochondrial dysfunction in cardiomyocytes.</description><subject>Acyl-CoA</subject><subject>Animals</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Diabetic Cardiomyopathies - metabolism</subject><subject>Diabetic Cardiomyopathies - pathology</subject><subject>Diabetic cardiomyopathy</subject><subject>Female</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - metabolism</subject><subject>Heart Transplantation</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Lipid accumulation</subject><subject>Lipid Metabolism - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Middle Aged</subject><subject>Mitochondria fission</subject><subject>Mitochondrial Dynamics - physiology</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>RCAN1</subject><issn>0026-0495</issn><issn>1532-8600</issn><issn>1532-8600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EotvCTwD5yCXL2I7t-ISqVYFKFUh8nC3HnlCvkjjYSaX992SVhSunuTzzvjMPIW8Y7Bkw9f64H3B2ber3HHi9Z1IarZ-RHZOCV40CeE52AFxVUBt5Ra5LOQKA1o16Sa6EASmUgR359X2ZpoylxDTS1NFvh9svjLq-x6foZgy0j1MM1Hm_DEvv5jPmxkCHOCf_mMaQo-tpF7eAONIQXYtz9NS7HGIaTmly8-PpFXnRub7g68u8IT8_3v04fK4evn66P9w-VJ7XYq5UELXjtauxUwxAatFwVNrr9eDWCICWdYJzLpsutEYCa9ALrjzKWjBjhLgh77bcKaffC5bZDrF47Hs3YlqKFdDUWjOj-IrKDfU5lZKxs1OOg8sny8CeHdujvTi2Z8d2c7zuvb1ULO2A4d_WX6kr8GEDcH30KWK2xUccPYaY0c82pPifij81GZAP</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Shu, Songren</creator><creator>Cui, Hao</creator><creator>Liu, Zirui</creator><creator>Zhang, Hang</creator><creator>Yang, Yicheng</creator><creator>Chen, Xiao</creator><creator>Zeng, Zhiwei</creator><creator>Du, Leilei</creator><creator>Fu, Mengxia</creator><creator>Yang, Ziang</creator><creator>Wang, Peizhi</creator><creator>Wang, Chuangshi</creator><creator>Gao, Huimin</creator><creator>Yang, Qiaoxi</creator><creator>Lin, Xiaojun</creator><creator>Yang, Tianshuo</creator><creator>Chen, Zhice</creator><creator>Wu, Sijin</creator><creator>Wang, Xiaohu</creator><creator>Zhao, Ruojin</creator><creator>Hu, Shengshou</creator><creator>Song, Jiangping</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202409</creationdate><title>Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy</title><author>Shu, Songren ; Cui, Hao ; Liu, Zirui ; Zhang, Hang ; Yang, Yicheng ; Chen, Xiao ; Zeng, Zhiwei ; Du, Leilei ; Fu, Mengxia ; Yang, Ziang ; Wang, Peizhi ; Wang, Chuangshi ; Gao, Huimin ; Yang, Qiaoxi ; Lin, Xiaojun ; Yang, Tianshuo ; Chen, Zhice ; Wu, Sijin ; Wang, Xiaohu ; Zhao, Ruojin ; Hu, Shengshou ; Song, Jiangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-6d34a24a4ef610057382e67c7905b9300b1f322258fdb95018ec326ce54319933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acyl-CoA</topic><topic>Animals</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Diabetic Cardiomyopathies - metabolism</topic><topic>Diabetic Cardiomyopathies - pathology</topic><topic>Diabetic cardiomyopathy</topic><topic>Female</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - metabolism</topic><topic>Heart Transplantation</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Lipid accumulation</topic><topic>Lipid Metabolism - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Middle Aged</topic><topic>Mitochondria fission</topic><topic>Mitochondrial Dynamics - physiology</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>RCAN1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Songren</creatorcontrib><creatorcontrib>Cui, Hao</creatorcontrib><creatorcontrib>Liu, Zirui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Yang, Yicheng</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zeng, Zhiwei</creatorcontrib><creatorcontrib>Du, Leilei</creatorcontrib><creatorcontrib>Fu, Mengxia</creatorcontrib><creatorcontrib>Yang, Ziang</creatorcontrib><creatorcontrib>Wang, Peizhi</creatorcontrib><creatorcontrib>Wang, Chuangshi</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Yang, Qiaoxi</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Yang, Tianshuo</creatorcontrib><creatorcontrib>Chen, Zhice</creatorcontrib><creatorcontrib>Wu, Sijin</creatorcontrib><creatorcontrib>Wang, Xiaohu</creatorcontrib><creatorcontrib>Zhao, Ruojin</creatorcontrib><creatorcontrib>Hu, Shengshou</creatorcontrib><creatorcontrib>Song, Jiangping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolism, clinical and experimental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Songren</au><au>Cui, Hao</au><au>Liu, Zirui</au><au>Zhang, Hang</au><au>Yang, Yicheng</au><au>Chen, Xiao</au><au>Zeng, Zhiwei</au><au>Du, Leilei</au><au>Fu, Mengxia</au><au>Yang, Ziang</au><au>Wang, Peizhi</au><au>Wang, Chuangshi</au><au>Gao, Huimin</au><au>Yang, Qiaoxi</au><au>Lin, Xiaojun</au><au>Yang, Tianshuo</au><au>Chen, Zhice</au><au>Wu, Sijin</au><au>Wang, Xiaohu</au><au>Zhao, Ruojin</au><au>Hu, Shengshou</au><au>Song, Jiangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy</atitle><jtitle>Metabolism, clinical and experimental</jtitle><addtitle>Metabolism</addtitle><date>2024-09</date><risdate>2024</risdate><volume>158</volume><spage>155977</spage><pages>155977-</pages><artnum>155977</artnum><issn>0026-0495</issn><issn>1532-8600</issn><eissn>1532-8600</eissn><abstract>Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM. [Display omitted] •Diabetes promotes non-diabetic heart failure after heart transplantation.•The increase in acyl-CoA is the metabolic hallmark of diabetic cardiomyopathy.•Knockdown of RCAN1 improved the cardiac function and structure of db/db mice.•RCAN1-p-Drp1 Ser616 axis contributes to mitochondrial dysfunction in cardiomyocytes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39053690</pmid><doi>10.1016/j.metabol.2024.155977</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-0495
ispartof Metabolism, clinical and experimental, 2024-09, Vol.158, p.155977, Article 155977
issn 0026-0495
1532-8600
1532-8600
language eng
recordid cdi_proquest_miscellaneous_3084771962
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acyl-CoA
Animals
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - metabolism
Diabetic Cardiomyopathies - metabolism
Diabetic Cardiomyopathies - pathology
Diabetic cardiomyopathy
Female
Heart Failure - etiology
Heart Failure - metabolism
Heart Transplantation
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Lipid accumulation
Lipid Metabolism - physiology
Male
Mice
Mice, Inbred C57BL
Middle Aged
Mitochondria fission
Mitochondrial Dynamics - physiology
Muscle Proteins - genetics
Muscle Proteins - metabolism
Myocardium - metabolism
Myocardium - pathology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
RCAN1
title Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20RCAN1%20alleviated%20lipid%20accumulation%20and%20mitochondrial%20fission%20in%20diabetic%20cardiomyopathy&rft.jtitle=Metabolism,%20clinical%20and%20experimental&rft.au=Shu,%20Songren&rft.date=2024-09&rft.volume=158&rft.spage=155977&rft.pages=155977-&rft.artnum=155977&rft.issn=0026-0495&rft.eissn=1532-8600&rft_id=info:doi/10.1016/j.metabol.2024.155977&rft_dat=%3Cproquest_cross%3E3084771962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084771962&rft_id=info:pmid/39053690&rft_els_id=S002604952400204X&rfr_iscdi=true