Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries

A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging–discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21721-21728
Hauptverfasser: Fu, Shuting, Wang, Hongmin, Schaefer, Samuel, Shang, Bo, Ren, Longtao, Zhang, Wanyu, Wu, Mingmei, Wang, Hailiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21728
container_issue 31
container_start_page 21721
container_title Journal of the American Chemical Society
container_volume 146
creator Fu, Shuting
Wang, Hongmin
Schaefer, Samuel
Shang, Bo
Ren, Longtao
Zhang, Wanyu
Wu, Mingmei
Wang, Hailiang
description A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging–discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stability] of both electrodes because the result is generally governed by the lower-capacity electrode of the cell, namely the limiting reagent of the battery reaction. In studying stoichiometric Li–S cells operating under application-relevant high-mass-loading and lean-electrolyte conditions, we take advantage of the two-stage discharging behavior of sulfur to construct a simple framework that allows us to analyze both electrodes simultaneously. The cell capacity and its decay are anode performance descriptors, whereas the first plateau capacity and cell CE are cathode performance descriptors. Our analysis within this frame identifies Li stripping/plating and polysulfide shuttling to be the limiting factors for the cycling performance of the stoichiometric Li–S cell. Using our newly developed framework, we examine various previously reported strategies to mitigate these bottleneck problems and find modifying the separator with a reduced graphene oxide layer to be an effective means, which improves the capacity retention rate of the cell to 99.7% per cycle.
doi_str_mv 10.1021/jacs.4c05827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084771485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084771485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-8db124afafce5e3c5a7adc3a5fd2014f19ccb29d804b4941c3ccf231b50a333b3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMSOPDKT4s0nGUrWAVImhMEeOY6suTl38IdSN_8A_5JeQqgUWptOdnntP9wBwidEQI4JvV0KGIZOIFyQ_An3MCco4JqNj0EcIkSwvRrQHzkJYdS0jBT4FPVoijsu87IPVwrQbq-DMi1a9O_8KtfOwGyYbxVq5FOB4Lew2mACdhncuLuHUKhm9a1SAZg0X0Rm5NK5V0RsJ5yYuTWq_Pj4Xyerk4Z2IUXmjwjk40cIGdXGoA_Aymz5PHrL50_3jZDzPBME4ZkVTY8KEFloqrqjkIheNpILrhiDMNC6lrEnZFIjVrGRYUik1objmSFBKazoA1_vcjXdvSYVYtSZIZe3-n4qiguU5ZgXv0Js9Kr0LwStdbbxphd9WGFU7u9XObnWw2-FXh-RUt6r5hX90_p3eba1c8p268H_WN-2rhmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084771485</pqid></control><display><type>article</type><title>Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries</title><source>ACS Publications</source><creator>Fu, Shuting ; Wang, Hongmin ; Schaefer, Samuel ; Shang, Bo ; Ren, Longtao ; Zhang, Wanyu ; Wu, Mingmei ; Wang, Hailiang</creator><creatorcontrib>Fu, Shuting ; Wang, Hongmin ; Schaefer, Samuel ; Shang, Bo ; Ren, Longtao ; Zhang, Wanyu ; Wu, Mingmei ; Wang, Hailiang</creatorcontrib><description>A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging–discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stability] of both electrodes because the result is generally governed by the lower-capacity electrode of the cell, namely the limiting reagent of the battery reaction. In studying stoichiometric Li–S cells operating under application-relevant high-mass-loading and lean-electrolyte conditions, we take advantage of the two-stage discharging behavior of sulfur to construct a simple framework that allows us to analyze both electrodes simultaneously. The cell capacity and its decay are anode performance descriptors, whereas the first plateau capacity and cell CE are cathode performance descriptors. Our analysis within this frame identifies Li stripping/plating and polysulfide shuttling to be the limiting factors for the cycling performance of the stoichiometric Li–S cell. Using our newly developed framework, we examine various previously reported strategies to mitigate these bottleneck problems and find modifying the separator with a reduced graphene oxide layer to be an effective means, which improves the capacity retention rate of the cell to 99.7% per cycle.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05827</identifier><identifier>PMID: 39051979</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21721-21728</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-8db124afafce5e3c5a7adc3a5fd2014f19ccb29d804b4941c3ccf231b50a333b3</cites><orcidid>0000-0003-4409-2034 ; 0000-0002-2294-6062 ; 0000-0001-8087-3925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05827$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05827$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39051979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Schaefer, Samuel</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Ren, Longtao</creatorcontrib><creatorcontrib>Zhang, Wanyu</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><title>Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging–discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stability] of both electrodes because the result is generally governed by the lower-capacity electrode of the cell, namely the limiting reagent of the battery reaction. In studying stoichiometric Li–S cells operating under application-relevant high-mass-loading and lean-electrolyte conditions, we take advantage of the two-stage discharging behavior of sulfur to construct a simple framework that allows us to analyze both electrodes simultaneously. The cell capacity and its decay are anode performance descriptors, whereas the first plateau capacity and cell CE are cathode performance descriptors. Our analysis within this frame identifies Li stripping/plating and polysulfide shuttling to be the limiting factors for the cycling performance of the stoichiometric Li–S cell. Using our newly developed framework, we examine various previously reported strategies to mitigate these bottleneck problems and find modifying the separator with a reduced graphene oxide layer to be an effective means, which improves the capacity retention rate of the cell to 99.7% per cycle.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMSOPDKT4s0nGUrWAVImhMEeOY6suTl38IdSN_8A_5JeQqgUWptOdnntP9wBwidEQI4JvV0KGIZOIFyQ_An3MCco4JqNj0EcIkSwvRrQHzkJYdS0jBT4FPVoijsu87IPVwrQbq-DMi1a9O_8KtfOwGyYbxVq5FOB4Lew2mACdhncuLuHUKhm9a1SAZg0X0Rm5NK5V0RsJ5yYuTWq_Pj4Xyerk4Z2IUXmjwjk40cIGdXGoA_Aymz5PHrL50_3jZDzPBME4ZkVTY8KEFloqrqjkIheNpILrhiDMNC6lrEnZFIjVrGRYUik1objmSFBKazoA1_vcjXdvSYVYtSZIZe3-n4qiguU5ZgXv0Js9Kr0LwStdbbxphd9WGFU7u9XObnWw2-FXh-RUt6r5hX90_p3eba1c8p268H_WN-2rhmI</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Fu, Shuting</creator><creator>Wang, Hongmin</creator><creator>Schaefer, Samuel</creator><creator>Shang, Bo</creator><creator>Ren, Longtao</creator><creator>Zhang, Wanyu</creator><creator>Wu, Mingmei</creator><creator>Wang, Hailiang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0002-2294-6062</orcidid><orcidid>https://orcid.org/0000-0001-8087-3925</orcidid></search><sort><creationdate>20240807</creationdate><title>Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries</title><author>Fu, Shuting ; Wang, Hongmin ; Schaefer, Samuel ; Shang, Bo ; Ren, Longtao ; Zhang, Wanyu ; Wu, Mingmei ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-8db124afafce5e3c5a7adc3a5fd2014f19ccb29d804b4941c3ccf231b50a333b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Schaefer, Samuel</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Ren, Longtao</creatorcontrib><creatorcontrib>Zhang, Wanyu</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shuting</au><au>Wang, Hongmin</au><au>Schaefer, Samuel</au><au>Shang, Bo</au><au>Ren, Longtao</au><au>Zhang, Wanyu</au><au>Wu, Mingmei</au><au>Wang, Hailiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>146</volume><issue>31</issue><spage>21721</spage><epage>21728</epage><pages>21721-21728</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging–discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stability] of both electrodes because the result is generally governed by the lower-capacity electrode of the cell, namely the limiting reagent of the battery reaction. In studying stoichiometric Li–S cells operating under application-relevant high-mass-loading and lean-electrolyte conditions, we take advantage of the two-stage discharging behavior of sulfur to construct a simple framework that allows us to analyze both electrodes simultaneously. The cell capacity and its decay are anode performance descriptors, whereas the first plateau capacity and cell CE are cathode performance descriptors. Our analysis within this frame identifies Li stripping/plating and polysulfide shuttling to be the limiting factors for the cycling performance of the stoichiometric Li–S cell. Using our newly developed framework, we examine various previously reported strategies to mitigate these bottleneck problems and find modifying the separator with a reduced graphene oxide layer to be an effective means, which improves the capacity retention rate of the cell to 99.7% per cycle.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39051979</pmid><doi>10.1021/jacs.4c05827</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0002-2294-6062</orcidid><orcidid>https://orcid.org/0000-0001-8087-3925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21721-21728
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3084771485
source ACS Publications
title Simple Framework for Simultaneous Analysis of Both Electrodes in Stoichiometric Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Framework%20for%20Simultaneous%20Analysis%20of%20Both%20Electrodes%20in%20Stoichiometric%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fu,%20Shuting&rft.date=2024-08-07&rft.volume=146&rft.issue=31&rft.spage=21721&rft.epage=21728&rft.pages=21721-21728&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05827&rft_dat=%3Cproquest_cross%3E3084771485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084771485&rft_id=info:pmid/39051979&rfr_iscdi=true