Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization

To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-09, Vol.477, p.135059, Article 135059
Hauptverfasser: Irianni-Renno, Maria, Rico, Jorge L., Key, Trent A., De Long, Susan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135059
container_title Journal of hazardous materials
container_volume 477
creator Irianni-Renno, Maria
Rico, Jorge L.
Key, Trent A.
De Long, Susan K.
description To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone. [Display omitted] •Redox dynamics and active microbiomes investigated during natural source zone depletion (NSZD) and enhanced SZD.•Continuous ORP data resolves distinct spatial/temporal patterns impacting biodegradation performance.•ORP measurements consistent with active microbiome structure data.•Differences in LNAPL composition affect naphthalene degradation mechanism.•Active Smithella spp. prevalent in alkane rich environments.
doi_str_mv 10.1016/j.jhazmat.2024.135059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084771228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389424016388</els_id><sourcerecordid>3153675991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-f87a738a55d37197bdad496b2f10387193c7808dd11605fad49ac84f97f0dc6e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFRwD5yCWLHcexc0KoLAWpKgfgwsWa2BPWq8Re7GRF-zp9URLtwq3qydL4m_nH_gh5zdmaM16_2613W7gfYFyXrKzWXEgmm2dkxbUShRCifk5WTLCqELqpzslFzjvGGFeyekHORcOkYHW1Ig-bA_QTjD78orcwTgl6-i1OySL9GQPSj7jvcfQxUAiObsIWgkX3COID7aGNCcaY7qiN_TSETA8eaI6-pwld_DOXw5w2xSnTjCEvwcvowdsUWx8HpHYLCeyIyd_DMvclOeugz_jqdF6SH582368-Fzdfr79cfbgprCjFWHRagRIapHRC8Ua1DlzV1G3ZcSb0XBFWaaad47xmslsuweqqa1THnK1RXJK3x7n7FH9PmEcz-Gyx7yHgvK4RXIpayabhT6NMV0rxstQzKo_o_L6cE3Zmn_wA6c5wZhaVZmdOKs2i0hxVzn1vThFTO6D73_XP3Qy8PwI4_8nBYzLZelz0-IR2NC76JyL-AlYDtdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084771228</pqid></control><display><type>article</type><title>Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Irianni-Renno, Maria ; Rico, Jorge L. ; Key, Trent A. ; De Long, Susan K.</creator><creatorcontrib>Irianni-Renno, Maria ; Rico, Jorge L. ; Key, Trent A. ; De Long, Susan K.</creatorcontrib><description>To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone. [Display omitted] •Redox dynamics and active microbiomes investigated during natural source zone depletion (NSZD) and enhanced SZD.•Continuous ORP data resolves distinct spatial/temporal patterns impacting biodegradation performance.•ORP measurements consistent with active microbiome structure data.•Differences in LNAPL composition affect naphthalene degradation mechanism.•Active Smithella spp. prevalent in alkane rich environments.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2024.135059</identifier><identifier>PMID: 39053064</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biodegradation ; Continuous sensors ; Cryocoring ; DNA ; iron ; microbial activity ; Microbial communities ; microbiome ; naphthalene ; oil and gas industry ; Petroleum hydrocarbons ; redox potential ; RNA ; soil ; Soil redox ; sulfates</subject><ispartof>Journal of hazardous materials, 2024-09, Vol.477, p.135059, Article 135059</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-f87a738a55d37197bdad496b2f10387193c7808dd11605fad49ac84f97f0dc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2024.135059$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39053064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irianni-Renno, Maria</creatorcontrib><creatorcontrib>Rico, Jorge L.</creatorcontrib><creatorcontrib>Key, Trent A.</creatorcontrib><creatorcontrib>De Long, Susan K.</creatorcontrib><title>Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone. [Display omitted] •Redox dynamics and active microbiomes investigated during natural source zone depletion (NSZD) and enhanced SZD.•Continuous ORP data resolves distinct spatial/temporal patterns impacting biodegradation performance.•ORP measurements consistent with active microbiome structure data.•Differences in LNAPL composition affect naphthalene degradation mechanism.•Active Smithella spp. prevalent in alkane rich environments.</description><subject>Biodegradation</subject><subject>Continuous sensors</subject><subject>Cryocoring</subject><subject>DNA</subject><subject>iron</subject><subject>microbial activity</subject><subject>Microbial communities</subject><subject>microbiome</subject><subject>naphthalene</subject><subject>oil and gas industry</subject><subject>Petroleum hydrocarbons</subject><subject>redox potential</subject><subject>RNA</subject><subject>soil</subject><subject>Soil redox</subject><subject>sulfates</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFRwD5yCWLHcexc0KoLAWpKgfgwsWa2BPWq8Re7GRF-zp9URLtwq3qydL4m_nH_gh5zdmaM16_2613W7gfYFyXrKzWXEgmm2dkxbUShRCifk5WTLCqELqpzslFzjvGGFeyekHORcOkYHW1Ig-bA_QTjD78orcwTgl6-i1OySL9GQPSj7jvcfQxUAiObsIWgkX3COID7aGNCcaY7qiN_TSETA8eaI6-pwld_DOXw5w2xSnTjCEvwcvowdsUWx8HpHYLCeyIyd_DMvclOeugz_jqdF6SH582368-Fzdfr79cfbgprCjFWHRagRIapHRC8Ua1DlzV1G3ZcSb0XBFWaaad47xmslsuweqqa1THnK1RXJK3x7n7FH9PmEcz-Gyx7yHgvK4RXIpayabhT6NMV0rxstQzKo_o_L6cE3Zmn_wA6c5wZhaVZmdOKs2i0hxVzn1vThFTO6D73_XP3Qy8PwI4_8nBYzLZelz0-IR2NC76JyL-AlYDtdo</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Irianni-Renno, Maria</creator><creator>Rico, Jorge L.</creator><creator>Key, Trent A.</creator><creator>De Long, Susan K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240915</creationdate><title>Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization</title><author>Irianni-Renno, Maria ; Rico, Jorge L. ; Key, Trent A. ; De Long, Susan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-f87a738a55d37197bdad496b2f10387193c7808dd11605fad49ac84f97f0dc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodegradation</topic><topic>Continuous sensors</topic><topic>Cryocoring</topic><topic>DNA</topic><topic>iron</topic><topic>microbial activity</topic><topic>Microbial communities</topic><topic>microbiome</topic><topic>naphthalene</topic><topic>oil and gas industry</topic><topic>Petroleum hydrocarbons</topic><topic>redox potential</topic><topic>RNA</topic><topic>soil</topic><topic>Soil redox</topic><topic>sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irianni-Renno, Maria</creatorcontrib><creatorcontrib>Rico, Jorge L.</creatorcontrib><creatorcontrib>Key, Trent A.</creatorcontrib><creatorcontrib>De Long, Susan K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irianni-Renno, Maria</au><au>Rico, Jorge L.</au><au>Key, Trent A.</au><au>De Long, Susan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>477</volume><spage>135059</spage><pages>135059-</pages><artnum>135059</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>To optimally employ Natural Source Zone Depletion (NSZD) and Enhanced Source Zone Depletion (ESZD) at sites impacted by light non-aqueous phase liquids (LNAPL), monitoring strategies are required. Emerging use of subsurface oxidation-reduction potential (ORP) sensors shows promise for tracking redox evolution, which reflects ongoing biogeochemical processes. However, further understanding of how soil redox dynamics relate to subsurface microbial activity and LNAPL degradation pathways is needed. In this work, soil ORP sensors and DNA and RNA sequencing-based microbiome analysis were combined to elucidate NSZD and ESZD (biostimulation via periodic sulfate addition and biosparging) processes in columns containing LNAPL-impacted soils from a former petroleum refinery. Results show expected relationships between continuous soil redox and active microbial communities. Continuous data revealed spatial and temporal detail that informed interpretation of the hydrocarbon biodegradation data. Redox increases were transient for sulfate addition, and sequencing revealed how hydrocarbon concentration and composition impacted microbiome structure and naphthalene degradation. Periodic biosparging did not result in fully aerobic conditions suggesting observed biodegradation improvements could be explained by alternative anaerobic metabolisms (e.g., iron reduction due to air oxidizing reduced iron). Collectively, data suggest combining continuous redox sensing with microbiome analysis provides insights beyond those possible with either monitoring tool alone. [Display omitted] •Redox dynamics and active microbiomes investigated during natural source zone depletion (NSZD) and enhanced SZD.•Continuous ORP data resolves distinct spatial/temporal patterns impacting biodegradation performance.•ORP measurements consistent with active microbiome structure data.•Differences in LNAPL composition affect naphthalene degradation mechanism.•Active Smithella spp. prevalent in alkane rich environments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39053064</pmid><doi>10.1016/j.jhazmat.2024.135059</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2024-09, Vol.477, p.135059, Article 135059
issn 0304-3894
1873-3336
1873-3336
language eng
recordid cdi_proquest_miscellaneous_3084771228
source ScienceDirect Journals (5 years ago - present)
subjects Biodegradation
Continuous sensors
Cryocoring
DNA
iron
microbial activity
Microbial communities
microbiome
naphthalene
oil and gas industry
Petroleum hydrocarbons
redox potential
RNA
soil
Soil redox
sulfates
title Evaluating Natural Source Zone Depletion and Enhanced Source Zone Depletion in laboratory columns via soil redox continuous sensing and microbiome characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Natural%20Source%20Zone%20Depletion%20and%20Enhanced%20Source%20Zone%20Depletion%20in%20laboratory%20columns%20via%20soil%20redox%20continuous%20sensing%20and%20microbiome%20characterization&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Irianni-Renno,%20Maria&rft.date=2024-09-15&rft.volume=477&rft.spage=135059&rft.pages=135059-&rft.artnum=135059&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2024.135059&rft_dat=%3Cproquest_cross%3E3153675991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084771228&rft_id=info:pmid/39053064&rft_els_id=S0304389424016388&rfr_iscdi=true