Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress

This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2024-08, Vol.26 (4), p.810-826
Hauptverfasser: Gao, Changsheng, Nie, Hongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 4
container_start_page 810
container_title Marine biotechnology (New York, N.Y.)
container_volume 26
creator Gao, Changsheng
Nie, Hongtao
description This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum . The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
doi_str_mv 10.1007/s10126-024-10348-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084031572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087426948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-86e13aa5ab030bccce7ebfb82b22392c250422cebb34bc71b82513e1025f64743</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpqZ2kf6CHIOill231tR8-GuMmgdCAk5yFJI8dmV2tKmmD---rzeYDeshpBPPMOyMehL5S8oMSUv-MlFBWFYSJghIumoJ9QHMqeFUwxquPr2_WzNBJjAeSh2pOPqMZXxBRlQs6R8f10bd9sG6P0wPgS1Cp2ED0vYv2EXBnN7-XESu3Hds24DsV9pDwBTjAG9gPrUq2d9g6vBm2NikPEfsH21rvrVNh6PC920LASzOkKR7fpgAxnqFPO9VG-PJcT9H9r_Xd6rK4vrm4Wi2vC8PKKhVNBZQrVSpNONHGGKhB73TDdP7jgmWICMYMaM2FNjXNnZJyoISVu0rUgp-i71OuD_2fAWKSnY0G2lY56IcoOWkE4bSsWUa__Yce-iG4fN1I1YJVC9Fkik2UCX2MAXbSB9up8FdSIkcvcvIisxf55EWO0efP0YPuYPs68iIiA3wCoh9lQHjb_U7sPxwxmGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087426948</pqid></control><display><type>article</type><title>Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress</title><source>MEDLINE</source><source>SpringerLink</source><creator>Gao, Changsheng ; Nie, Hongtao</creator><creatorcontrib>Gao, Changsheng ; Nie, Hongtao</creatorcontrib><description>This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum . The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.</description><identifier>ISSN: 1436-2228</identifier><identifier>ISSN: 1436-2236</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-024-10348-2</identifier><identifier>PMID: 39046591</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Aquaculture ; Biomedical and Life Sciences ; Bivalvia - genetics ; Bivalvia - metabolism ; Engineering ; Fatty acids ; Forkhead protein ; Freshwater &amp; Marine Ecology ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene regulation ; Genes ; Heat ; Heat resistance ; Heat stress ; Heat tolerance ; Heat-Shock Response - genetics ; High temperature ; High temperature environments ; Hot Temperature ; Industrial development ; Life Sciences ; Marine molluscs ; Metabolism ; Microbiology ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; mRNA ; Proteolysis ; Regulatory mechanisms (biology) ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Ruditapes philippinarum ; Signal Transduction ; Sustainable development ; Target detection ; Temperature effects ; Transforming growth factor-b ; Ubiquitin ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2024-08, Vol.26 (4), p.810-826</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-86e13aa5ab030bccce7ebfb82b22392c250422cebb34bc71b82513e1025f64743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-024-10348-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-024-10348-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39046591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Changsheng</creatorcontrib><creatorcontrib>Nie, Hongtao</creatorcontrib><title>Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum . The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Biomedical and Life Sciences</subject><subject>Bivalvia - genetics</subject><subject>Bivalvia - metabolism</subject><subject>Engineering</subject><subject>Fatty acids</subject><subject>Forkhead protein</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Heat</subject><subject>Heat resistance</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - genetics</subject><subject>High temperature</subject><subject>High temperature environments</subject><subject>Hot Temperature</subject><subject>Industrial development</subject><subject>Life Sciences</subject><subject>Marine molluscs</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>mRNA</subject><subject>Proteolysis</subject><subject>Regulatory mechanisms (biology)</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Ruditapes philippinarum</subject><subject>Signal Transduction</subject><subject>Sustainable development</subject><subject>Target detection</subject><subject>Temperature effects</subject><subject>Transforming growth factor-b</subject><subject>Ubiquitin</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rGzEQhkVpqZ2kf6CHIOill231tR8-GuMmgdCAk5yFJI8dmV2tKmmD---rzeYDeshpBPPMOyMehL5S8oMSUv-MlFBWFYSJghIumoJ9QHMqeFUwxquPr2_WzNBJjAeSh2pOPqMZXxBRlQs6R8f10bd9sG6P0wPgS1Cp2ED0vYv2EXBnN7-XESu3Hds24DsV9pDwBTjAG9gPrUq2d9g6vBm2NikPEfsH21rvrVNh6PC920LASzOkKR7fpgAxnqFPO9VG-PJcT9H9r_Xd6rK4vrm4Wi2vC8PKKhVNBZQrVSpNONHGGKhB73TDdP7jgmWICMYMaM2FNjXNnZJyoISVu0rUgp-i71OuD_2fAWKSnY0G2lY56IcoOWkE4bSsWUa__Yce-iG4fN1I1YJVC9Fkik2UCX2MAXbSB9up8FdSIkcvcvIisxf55EWO0efP0YPuYPs68iIiA3wCoh9lQHjb_U7sPxwxmGQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gao, Changsheng</creator><creator>Nie, Hongtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress</title><author>Gao, Changsheng ; Nie, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-86e13aa5ab030bccce7ebfb82b22392c250422cebb34bc71b82513e1025f64743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Biomedical and Life Sciences</topic><topic>Bivalvia - genetics</topic><topic>Bivalvia - metabolism</topic><topic>Engineering</topic><topic>Fatty acids</topic><topic>Forkhead protein</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Heat</topic><topic>Heat resistance</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - genetics</topic><topic>High temperature</topic><topic>High temperature environments</topic><topic>Hot Temperature</topic><topic>Industrial development</topic><topic>Life Sciences</topic><topic>Marine molluscs</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>mRNA</topic><topic>Proteolysis</topic><topic>Regulatory mechanisms (biology)</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Ruditapes philippinarum</topic><topic>Signal Transduction</topic><topic>Sustainable development</topic><topic>Target detection</topic><topic>Temperature effects</topic><topic>Transforming growth factor-b</topic><topic>Ubiquitin</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Changsheng</creatorcontrib><creatorcontrib>Nie, Hongtao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Changsheng</au><au>Nie, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>26</volume><issue>4</issue><spage>810</spage><epage>826</epage><pages>810-826</pages><issn>1436-2228</issn><issn>1436-2236</issn><eissn>1436-2236</eissn><abstract>This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum . The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39046591</pmid><doi>10.1007/s10126-024-10348-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2024-08, Vol.26 (4), p.810-826
issn 1436-2228
1436-2236
1436-2236
language eng
recordid cdi_proquest_miscellaneous_3084031572
source MEDLINE; SpringerLink
subjects Animals
Aquaculture
Biomedical and Life Sciences
Bivalvia - genetics
Bivalvia - metabolism
Engineering
Fatty acids
Forkhead protein
Freshwater & Marine Ecology
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene regulation
Genes
Heat
Heat resistance
Heat stress
Heat tolerance
Heat-Shock Response - genetics
High temperature
High temperature environments
Hot Temperature
Industrial development
Life Sciences
Marine molluscs
Metabolism
Microbiology
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
mRNA
Proteolysis
Regulatory mechanisms (biology)
RNA, Messenger - genetics
RNA, Messenger - metabolism
Ruditapes philippinarum
Signal Transduction
Sustainable development
Target detection
Temperature effects
Transforming growth factor-b
Ubiquitin
Zoology
title Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Heat-Responsive%20miRNAs%20and%20their%20Target%20Gene%20Regulation%20in%20Ruditapes%20philippinarum%20Under%20Acute%20Heat%20Stress&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Gao,%20Changsheng&rft.date=2024-08-01&rft.volume=26&rft.issue=4&rft.spage=810&rft.epage=826&rft.pages=810-826&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-024-10348-2&rft_dat=%3Cproquest_cross%3E3087426948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087426948&rft_id=info:pmid/39046591&rfr_iscdi=true