Co-immobilization of a bi-enzymatic cascade into hierarchically porous MIL-53 for efficient 6'-sialyllactose production
6'-Sialyllactose (6'-SL), the most abundant sialylated human milk oligosaccharide, has attracted attention for its potential application in supplementary infant formulas. Herein, we report a facile strategy to construct a cascade bioreactor for the enzymatic synthesis of 6'-SL by co-i...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-08, Vol.16 (31), p.14932-14939 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 6'-Sialyllactose (6'-SL), the most abundant sialylated human milk oligosaccharide, has attracted attention for its potential application in supplementary infant formulas. Herein, we report a facile strategy to construct a cascade bioreactor for the enzymatic synthesis of 6'-SL by co-immobilizing an enzymatic module consisting of CMP-sialic acid synthase and α-2,6-sialyltransferase into hierarchically porous MIL-53 (HP-MIL-53). The as-prepared HP-MIL-53 showed high enzyme immobilization capacity, reaching 226 mg g
. Furthermore, the co-immobilized enzymes exhibited higher initial catalytic efficiency, and thermal, pH and storage stability than the free ones. Finally, the 6'-SL yield remained >80% after 13 cycles of use. We expect that HP-MIL-53 would have potential industrial applications in the enzymatic modular synthesis of 6'-SL and other glycans. |
---|---|
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/d4nr01775g |