Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals
Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-07, Vol.18 (31), p.20636-20647 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20647 |
---|---|
container_issue | 31 |
container_start_page | 20636 |
container_title | ACS nano |
container_volume | 18 |
creator | Chang, Woo Je Roman, Benjamin J. Green, Allison M. Truskett, Thomas M. Milliron, Delia J. |
description | Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling. |
doi_str_mv | 10.1021/acsnano.4c06145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083680237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083680237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</originalsourceid><addsrcrecordid>eNp1kM9PwjAUxxujEUTP3kyPJmbQH9u6HQlBJUExosbb0nWtjGztbLco_vWWgNw8vW_e-7xv-74AXGI0xIjgERdOc22GoUAxDqMj0McpjQOUxO_HBx3hHjhzbo1QxBIWn4IeTRFN04j1wc-ys4oLGUz1imshCzjTynLrxTh3xjZtaTRcNlK01jhhmg3MN_BZOuPfbeFbmVu-RXgFJ6ZrqlJ_wK-yXcGnirva6FLAB9n66eK7LCR89J8VduN8x52DE-WLvNjXAXi9nb5M7oP54m42Gc8DTjBrg4IqgZVIlWIMecURUywiKJdIJpT4K0KGIoKLnMckLkguZERTmsaUhDJNcjoA1zvfxprPTro2q0snZFVxLU3nMooSGieIUObR0Q4V_lhnpcoaW9bcbjKMsm3g2T7wbB-437jam3d5LYsD_5ewB252gN_M1qazPir3r90vKyaOaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083680237</pqid></control><display><type>article</type><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><source>ACS Publications</source><creator>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</creator><creatorcontrib>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</creatorcontrib><description>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c06145</identifier><identifier>PMID: 39039957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-07, Vol.18 (31), p.20636-20647</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</cites><orcidid>0000-0003-0796-9271 ; 0000-0002-6607-6468 ; 0000-0002-8737-451X ; 0000-0002-7734-4202 ; 0000-0003-2213-2533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c06145$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c06145$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39039957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Woo Je</creatorcontrib><creatorcontrib>Roman, Benjamin J.</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwjAUxxujEUTP3kyPJmbQH9u6HQlBJUExosbb0nWtjGztbLco_vWWgNw8vW_e-7xv-74AXGI0xIjgERdOc22GoUAxDqMj0McpjQOUxO_HBx3hHjhzbo1QxBIWn4IeTRFN04j1wc-ys4oLGUz1imshCzjTynLrxTh3xjZtaTRcNlK01jhhmg3MN_BZOuPfbeFbmVu-RXgFJ6ZrqlJ_wK-yXcGnirva6FLAB9n66eK7LCR89J8VduN8x52DE-WLvNjXAXi9nb5M7oP54m42Gc8DTjBrg4IqgZVIlWIMecURUywiKJdIJpT4K0KGIoKLnMckLkguZERTmsaUhDJNcjoA1zvfxprPTro2q0snZFVxLU3nMooSGieIUObR0Q4V_lhnpcoaW9bcbjKMsm3g2T7wbB-437jam3d5LYsD_5ewB252gN_M1qazPir3r90vKyaOaw</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Chang, Woo Je</creator><creator>Roman, Benjamin J.</creator><creator>Green, Allison M.</creator><creator>Truskett, Thomas M.</creator><creator>Milliron, Delia J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0796-9271</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4202</orcidid><orcidid>https://orcid.org/0000-0003-2213-2533</orcidid></search><sort><creationdate>20240723</creationdate><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><author>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Woo Je</creatorcontrib><creatorcontrib>Roman, Benjamin J.</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Woo Je</au><au>Roman, Benjamin J.</au><au>Green, Allison M.</au><au>Truskett, Thomas M.</au><au>Milliron, Delia J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-23</date><risdate>2024</risdate><volume>18</volume><issue>31</issue><spage>20636</spage><epage>20647</epage><pages>20636-20647</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39039957</pmid><doi>10.1021/acsnano.4c06145</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0796-9271</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4202</orcidid><orcidid>https://orcid.org/0000-0003-2213-2533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-07, Vol.18 (31), p.20636-20647 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3083680237 |
source | ACS Publications |
title | Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Enhanced%20Infrared%20Absorption%20Spectroscopy%20by%20Resonant%20Vibrational%20Coupling%20with%20Plasmonic%20Metal%20Oxide%20Nanocrystals&rft.jtitle=ACS%20nano&rft.au=Chang,%20Woo%20Je&rft.date=2024-07-23&rft.volume=18&rft.issue=31&rft.spage=20636&rft.epage=20647&rft.pages=20636-20647&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c06145&rft_dat=%3Cproquest_cross%3E3083680237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083680237&rft_id=info:pmid/39039957&rfr_iscdi=true |