Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals

Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-07, Vol.18 (31), p.20636-20647
Hauptverfasser: Chang, Woo Je, Roman, Benjamin J., Green, Allison M., Truskett, Thomas M., Milliron, Delia J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20647
container_issue 31
container_start_page 20636
container_title ACS nano
container_volume 18
creator Chang, Woo Je
Roman, Benjamin J.
Green, Allison M.
Truskett, Thomas M.
Milliron, Delia J.
description Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.
doi_str_mv 10.1021/acsnano.4c06145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083680237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083680237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</originalsourceid><addsrcrecordid>eNp1kM9PwjAUxxujEUTP3kyPJmbQH9u6HQlBJUExosbb0nWtjGztbLco_vWWgNw8vW_e-7xv-74AXGI0xIjgERdOc22GoUAxDqMj0McpjQOUxO_HBx3hHjhzbo1QxBIWn4IeTRFN04j1wc-ys4oLGUz1imshCzjTynLrxTh3xjZtaTRcNlK01jhhmg3MN_BZOuPfbeFbmVu-RXgFJ6ZrqlJ_wK-yXcGnirva6FLAB9n66eK7LCR89J8VduN8x52DE-WLvNjXAXi9nb5M7oP54m42Gc8DTjBrg4IqgZVIlWIMecURUywiKJdIJpT4K0KGIoKLnMckLkguZERTmsaUhDJNcjoA1zvfxprPTro2q0snZFVxLU3nMooSGieIUObR0Q4V_lhnpcoaW9bcbjKMsm3g2T7wbB-437jam3d5LYsD_5ewB252gN_M1qazPir3r90vKyaOaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083680237</pqid></control><display><type>article</type><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><source>ACS Publications</source><creator>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</creator><creatorcontrib>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</creatorcontrib><description>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c06145</identifier><identifier>PMID: 39039957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-07, Vol.18 (31), p.20636-20647</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</cites><orcidid>0000-0003-0796-9271 ; 0000-0002-6607-6468 ; 0000-0002-8737-451X ; 0000-0002-7734-4202 ; 0000-0003-2213-2533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c06145$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c06145$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39039957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Woo Je</creatorcontrib><creatorcontrib>Roman, Benjamin J.</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwjAUxxujEUTP3kyPJmbQH9u6HQlBJUExosbb0nWtjGztbLco_vWWgNw8vW_e-7xv-74AXGI0xIjgERdOc22GoUAxDqMj0McpjQOUxO_HBx3hHjhzbo1QxBIWn4IeTRFN04j1wc-ys4oLGUz1imshCzjTynLrxTh3xjZtaTRcNlK01jhhmg3MN_BZOuPfbeFbmVu-RXgFJ6ZrqlJ_wK-yXcGnirva6FLAB9n66eK7LCR89J8VduN8x52DE-WLvNjXAXi9nb5M7oP54m42Gc8DTjBrg4IqgZVIlWIMecURUywiKJdIJpT4K0KGIoKLnMckLkguZERTmsaUhDJNcjoA1zvfxprPTro2q0snZFVxLU3nMooSGieIUObR0Q4V_lhnpcoaW9bcbjKMsm3g2T7wbB-437jam3d5LYsD_5ewB252gN_M1qazPir3r90vKyaOaw</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Chang, Woo Je</creator><creator>Roman, Benjamin J.</creator><creator>Green, Allison M.</creator><creator>Truskett, Thomas M.</creator><creator>Milliron, Delia J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0796-9271</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4202</orcidid><orcidid>https://orcid.org/0000-0003-2213-2533</orcidid></search><sort><creationdate>20240723</creationdate><title>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</title><author>Chang, Woo Je ; Roman, Benjamin J. ; Green, Allison M. ; Truskett, Thomas M. ; Milliron, Delia J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-d3fc1fc9ff770c1fa07f7520be0e832957470521dba626d2bce539396324e98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Woo Je</creatorcontrib><creatorcontrib>Roman, Benjamin J.</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Woo Je</au><au>Roman, Benjamin J.</au><au>Green, Allison M.</au><au>Truskett, Thomas M.</au><au>Milliron, Delia J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-23</date><risdate>2024</risdate><volume>18</volume><issue>31</issue><spage>20636</spage><epage>20647</epage><pages>20636-20647</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39039957</pmid><doi>10.1021/acsnano.4c06145</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0796-9271</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0002-7734-4202</orcidid><orcidid>https://orcid.org/0000-0003-2213-2533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-07, Vol.18 (31), p.20636-20647
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3083680237
source ACS Publications
title Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Enhanced%20Infrared%20Absorption%20Spectroscopy%20by%20Resonant%20Vibrational%20Coupling%20with%20Plasmonic%20Metal%20Oxide%20Nanocrystals&rft.jtitle=ACS%20nano&rft.au=Chang,%20Woo%20Je&rft.date=2024-07-23&rft.volume=18&rft.issue=31&rft.spage=20636&rft.epage=20647&rft.pages=20636-20647&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c06145&rft_dat=%3Cproquest_cross%3E3083680237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083680237&rft_id=info:pmid/39039957&rfr_iscdi=true