Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function

Abstract Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2024-09, Vol.228 (1)
Hauptverfasser: Crain, Aaron T, Nevil, Markus, Leatham-Jensen, Mary P, Reeves, Katherine B, Matera, A Gregory, McKay, Daniel J, Duronio, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Genetics (Austin)
container_volume 228
creator Crain, Aaron T
Nevil, Markus
Leatham-Jensen, Mary P
Reeves, Katherine B
Matera, A Gregory
McKay, Daniel J
Duronio, Robert J
description Abstract Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
doi_str_mv 10.1093/genetics/iyae117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083671730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyae117</oup_id><sourcerecordid>3083671730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2e6b33add9515141b49fb1902989ba673cfdfdf2e77ac0b08cfeb305f5f4cb413</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7rp69yQBL4KsJk2_4k38BkEQPZc0nexmaZOapIJH_7kpu4p4kYRMGJ55Z5IXoUNKzijh7HwBBoKW_lx_CKC02EJTylM2T3JGt3_dJ2jP-xUhJOdZuYsmjJO4Ez5Fn8_QgNcLo80ChyXga2e97Ze6FXipfbAG8NgFy3bwAdwFFgbrrnf2HRq86Y_7VgRlXYfjgX0vgrYBut460eJOGN0P7Zgz2KofVTUYOeb20Y4SrYeDTZyh19ubl6v7-ePT3cPV5eNcJmke5gnkNWOiaXhGM5rSOuWqpuMjSl6LvGBSNXElUBRCkpqUUkHNSKYylco6pWyGTta6cfa3AXyoOu0ltK0wYAdfMVKyvKAFIxE9_oOu7OBMnK5ilDCS8rIoI0XWlIxf5h2oqne6E-6joqQa7am-7ak29sSSo43wUHfQ_BR8-xGB0zVgh_5_uS-hz6E5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103049878</pqid></control><display><type>article</type><title>Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function</title><source>Oxford University Press Journals</source><creator>Crain, Aaron T ; Nevil, Markus ; Leatham-Jensen, Mary P ; Reeves, Katherine B ; Matera, A Gregory ; McKay, Daniel J ; Duronio, Robert J</creator><contributor>Larschan, E</contributor><creatorcontrib>Crain, Aaron T ; Nevil, Markus ; Leatham-Jensen, Mary P ; Reeves, Katherine B ; Matera, A Gregory ; McKay, Daniel J ; Duronio, Robert J ; Larschan, E</creatorcontrib><description>Abstract Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyae117</identifier><identifier>PMID: 39039029</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Arrays ; Cassettes ; Chromatin ; Cloning ; CRISPR ; Developmental stages ; Drosophila ; Epigenetics ; Fruit flies ; Gene regulation ; Genes ; Genetic engineering ; Genetic modification ; Genotypes ; Histones ; Insects ; Mutants ; Transgenes</subject><ispartof>Genetics (Austin), 2024-09, Vol.228 (1)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2e6b33add9515141b49fb1902989ba673cfdfdf2e77ac0b08cfeb305f5f4cb413</cites><orcidid>0000-0002-6406-0630 ; 0000-0002-6416-021X ; 0000-0001-6469-6965 ; 0000-0002-2425-5695 ; 0000-0001-8226-0604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39039029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Larschan, E</contributor><creatorcontrib>Crain, Aaron T</creatorcontrib><creatorcontrib>Nevil, Markus</creatorcontrib><creatorcontrib>Leatham-Jensen, Mary P</creatorcontrib><creatorcontrib>Reeves, Katherine B</creatorcontrib><creatorcontrib>Matera, A Gregory</creatorcontrib><creatorcontrib>McKay, Daniel J</creatorcontrib><creatorcontrib>Duronio, Robert J</creatorcontrib><title>Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.</description><subject>Arrays</subject><subject>Cassettes</subject><subject>Chromatin</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Developmental stages</subject><subject>Drosophila</subject><subject>Epigenetics</subject><subject>Fruit flies</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genotypes</subject><subject>Histones</subject><subject>Insects</subject><subject>Mutants</subject><subject>Transgenes</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMo7rp69yQBL4KsJk2_4k38BkEQPZc0nexmaZOapIJH_7kpu4p4kYRMGJ55Z5IXoUNKzijh7HwBBoKW_lx_CKC02EJTylM2T3JGt3_dJ2jP-xUhJOdZuYsmjJO4Ez5Fn8_QgNcLo80ChyXga2e97Ze6FXipfbAG8NgFy3bwAdwFFgbrrnf2HRq86Y_7VgRlXYfjgX0vgrYBut460eJOGN0P7Zgz2KofVTUYOeb20Y4SrYeDTZyh19ubl6v7-ePT3cPV5eNcJmke5gnkNWOiaXhGM5rSOuWqpuMjSl6LvGBSNXElUBRCkpqUUkHNSKYylco6pWyGTta6cfa3AXyoOu0ltK0wYAdfMVKyvKAFIxE9_oOu7OBMnK5ilDCS8rIoI0XWlIxf5h2oqne6E-6joqQa7am-7ak29sSSo43wUHfQ_BR8-xGB0zVgh_5_uS-hz6E5</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Crain, Aaron T</creator><creator>Nevil, Markus</creator><creator>Leatham-Jensen, Mary P</creator><creator>Reeves, Katherine B</creator><creator>Matera, A Gregory</creator><creator>McKay, Daniel J</creator><creator>Duronio, Robert J</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6406-0630</orcidid><orcidid>https://orcid.org/0000-0002-6416-021X</orcidid><orcidid>https://orcid.org/0000-0001-6469-6965</orcidid><orcidid>https://orcid.org/0000-0002-2425-5695</orcidid><orcidid>https://orcid.org/0000-0001-8226-0604</orcidid></search><sort><creationdate>20240904</creationdate><title>Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function</title><author>Crain, Aaron T ; Nevil, Markus ; Leatham-Jensen, Mary P ; Reeves, Katherine B ; Matera, A Gregory ; McKay, Daniel J ; Duronio, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2e6b33add9515141b49fb1902989ba673cfdfdf2e77ac0b08cfeb305f5f4cb413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Cassettes</topic><topic>Chromatin</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Developmental stages</topic><topic>Drosophila</topic><topic>Epigenetics</topic><topic>Fruit flies</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genotypes</topic><topic>Histones</topic><topic>Insects</topic><topic>Mutants</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crain, Aaron T</creatorcontrib><creatorcontrib>Nevil, Markus</creatorcontrib><creatorcontrib>Leatham-Jensen, Mary P</creatorcontrib><creatorcontrib>Reeves, Katherine B</creatorcontrib><creatorcontrib>Matera, A Gregory</creatorcontrib><creatorcontrib>McKay, Daniel J</creatorcontrib><creatorcontrib>Duronio, Robert J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crain, Aaron T</au><au>Nevil, Markus</au><au>Leatham-Jensen, Mary P</au><au>Reeves, Katherine B</au><au>Matera, A Gregory</au><au>McKay, Daniel J</au><au>Duronio, Robert J</au><au>Larschan, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>228</volume><issue>1</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>39039029</pmid><doi>10.1093/genetics/iyae117</doi><orcidid>https://orcid.org/0000-0002-6406-0630</orcidid><orcidid>https://orcid.org/0000-0002-6416-021X</orcidid><orcidid>https://orcid.org/0000-0001-6469-6965</orcidid><orcidid>https://orcid.org/0000-0002-2425-5695</orcidid><orcidid>https://orcid.org/0000-0001-8226-0604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2024-09, Vol.228 (1)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_proquest_miscellaneous_3083671730
source Oxford University Press Journals
subjects Arrays
Cassettes
Chromatin
Cloning
CRISPR
Developmental stages
Drosophila
Epigenetics
Fruit flies
Gene regulation
Genes
Genetic engineering
Genetic modification
Genotypes
Histones
Insects
Mutants
Transgenes
title Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redesigning%20the%20Drosophila%20histone%20gene%20cluster:%20an%20improved%20genetic%20platform%20for%20spatiotemporal%20manipulation%20of%20histone%20function&rft.jtitle=Genetics%20(Austin)&rft.au=Crain,%20Aaron%20T&rft.date=2024-09-04&rft.volume=228&rft.issue=1&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyae117&rft_dat=%3Cproquest_cross%3E3083671730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103049878&rft_id=info:pmid/39039029&rft_oup_id=10.1093/genetics/iyae117&rfr_iscdi=true