Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning
Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to...
Gespeichert in:
Veröffentlicht in: | Experimental dermatology 2024-07, Vol.33 (7), p.e15141-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e15141 |
container_title | Experimental dermatology |
container_volume | 33 |
creator | Brorsen, Lauritz F. McKenzie, James S. Pinto, Fernanda E. Glud, Martin Hansen, Harald S. Haedersdal, Merete Takats, Zoltan Janfelt, Christian Lerche, Catharina M. |
description | Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting. |
doi_str_mv | 10.1111/exd.15141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083219610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083219610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEgvFx4A-gSFzgUJY0bdIc0TZg0iYuIHGrnDQdmdoGklWwf0_GBgckfLAl6_Er2y9C55Tc0BhD81nd0JxmdA8NKCckITzN99GASMITLkh-hI5DWBJCBRP5ITpikjBeFHKAlnOzAuUa11qN37yrbWO7BYauwqB172FlcGVh0blgA3Y1VhCgwdo0MYHXtnMtYLXG89vZeIptC4uf-Rb0q-0Mbgz4LjZP0UENTTBnu3qCnu8mT6OHZPZ4Px3dzhKdZowmFQeqKs6A5VwIZuqMsrxIc6V1loKhREktNMuEEjUoISkruC5qUlc8FRIKdoKutrrxnPfehFXZ2rBZGDrj-lAyUrCUSk5JRC__oEvX-y5ut6GyXAoqs0hdbyntXQje1OWbj4f6dUlJuTGgjAaU3wZE9mKn2KvWVL_kz8cjMNwCH7Yx6_-VysnLeCv5BSa0jns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084597194</pqid></control><display><type>article</type><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</creator><creatorcontrib>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</creatorcontrib><description>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</description><identifier>ISSN: 0906-6705</identifier><identifier>ISSN: 1600-0625</identifier><identifier>EISSN: 1600-0625</identifier><identifier>DOI: 10.1111/exd.15141</identifier><identifier>PMID: 39036889</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Animals ; Basal cell carcinoma ; bioinformatics ; Biomarkers, Tumor - metabolism ; Carcinoma ; Carcinoma, Basal Cell - diagnosis ; Carcinoma, Basal Cell - metabolism ; Humans ; keratinocyte cancer ; Learning algorithms ; lipidomics ; Machine Learning ; mass spectrometry imaging ; Mass spectroscopy ; Metabolomics ; Metabolomics - methods ; Mice ; Public health ; Sensitivity analysis ; Sensitivity and Specificity ; Skin Neoplasms - diagnosis ; Skin Neoplasms - metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Tumors</subject><ispartof>Experimental dermatology, 2024-07, Vol.33 (7), p.e15141-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Experimental Dermatology published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</cites><orcidid>0000-0002-4626-3426 ; 0000-0002-2300-8481 ; 0000-0003-2173-0769 ; 0000-0002-6941-053X ; 0000-0002-1007-317X ; 0000-0001-7360-7418 ; 0000-0003-1250-2035 ; 0000-0002-0795-3467 ; 0000-0003-3653-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexd.15141$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexd.15141$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39036889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brorsen, Lauritz F.</creatorcontrib><creatorcontrib>McKenzie, James S.</creatorcontrib><creatorcontrib>Pinto, Fernanda E.</creatorcontrib><creatorcontrib>Glud, Martin</creatorcontrib><creatorcontrib>Hansen, Harald S.</creatorcontrib><creatorcontrib>Haedersdal, Merete</creatorcontrib><creatorcontrib>Takats, Zoltan</creatorcontrib><creatorcontrib>Janfelt, Christian</creatorcontrib><creatorcontrib>Lerche, Catharina M.</creatorcontrib><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><title>Experimental dermatology</title><addtitle>Exp Dermatol</addtitle><description>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Basal cell carcinoma</subject><subject>bioinformatics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Carcinoma</subject><subject>Carcinoma, Basal Cell - diagnosis</subject><subject>Carcinoma, Basal Cell - metabolism</subject><subject>Humans</subject><subject>keratinocyte cancer</subject><subject>Learning algorithms</subject><subject>lipidomics</subject><subject>Machine Learning</subject><subject>mass spectrometry imaging</subject><subject>Mass spectroscopy</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Mice</subject><subject>Public health</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - metabolism</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Tumors</subject><issn>0906-6705</issn><issn>1600-0625</issn><issn>1600-0625</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1PwzAMhiMEgvFx4A-gSFzgUJY0bdIc0TZg0iYuIHGrnDQdmdoGklWwf0_GBgckfLAl6_Er2y9C55Tc0BhD81nd0JxmdA8NKCckITzN99GASMITLkh-hI5DWBJCBRP5ITpikjBeFHKAlnOzAuUa11qN37yrbWO7BYauwqB172FlcGVh0blgA3Y1VhCgwdo0MYHXtnMtYLXG89vZeIptC4uf-Rb0q-0Mbgz4LjZP0UENTTBnu3qCnu8mT6OHZPZ4Px3dzhKdZowmFQeqKs6A5VwIZuqMsrxIc6V1loKhREktNMuEEjUoISkruC5qUlc8FRIKdoKutrrxnPfehFXZ2rBZGDrj-lAyUrCUSk5JRC__oEvX-y5ut6GyXAoqs0hdbyntXQje1OWbj4f6dUlJuTGgjAaU3wZE9mKn2KvWVL_kz8cjMNwCH7Yx6_-VysnLeCv5BSa0jns</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Brorsen, Lauritz F.</creator><creator>McKenzie, James S.</creator><creator>Pinto, Fernanda E.</creator><creator>Glud, Martin</creator><creator>Hansen, Harald S.</creator><creator>Haedersdal, Merete</creator><creator>Takats, Zoltan</creator><creator>Janfelt, Christian</creator><creator>Lerche, Catharina M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4626-3426</orcidid><orcidid>https://orcid.org/0000-0002-2300-8481</orcidid><orcidid>https://orcid.org/0000-0003-2173-0769</orcidid><orcidid>https://orcid.org/0000-0002-6941-053X</orcidid><orcidid>https://orcid.org/0000-0002-1007-317X</orcidid><orcidid>https://orcid.org/0000-0001-7360-7418</orcidid><orcidid>https://orcid.org/0000-0003-1250-2035</orcidid><orcidid>https://orcid.org/0000-0002-0795-3467</orcidid><orcidid>https://orcid.org/0000-0003-3653-6424</orcidid></search><sort><creationdate>202407</creationdate><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><author>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Basal cell carcinoma</topic><topic>bioinformatics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Carcinoma</topic><topic>Carcinoma, Basal Cell - diagnosis</topic><topic>Carcinoma, Basal Cell - metabolism</topic><topic>Humans</topic><topic>keratinocyte cancer</topic><topic>Learning algorithms</topic><topic>lipidomics</topic><topic>Machine Learning</topic><topic>mass spectrometry imaging</topic><topic>Mass spectroscopy</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Mice</topic><topic>Public health</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - metabolism</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brorsen, Lauritz F.</creatorcontrib><creatorcontrib>McKenzie, James S.</creatorcontrib><creatorcontrib>Pinto, Fernanda E.</creatorcontrib><creatorcontrib>Glud, Martin</creatorcontrib><creatorcontrib>Hansen, Harald S.</creatorcontrib><creatorcontrib>Haedersdal, Merete</creatorcontrib><creatorcontrib>Takats, Zoltan</creatorcontrib><creatorcontrib>Janfelt, Christian</creatorcontrib><creatorcontrib>Lerche, Catharina M.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brorsen, Lauritz F.</au><au>McKenzie, James S.</au><au>Pinto, Fernanda E.</au><au>Glud, Martin</au><au>Hansen, Harald S.</au><au>Haedersdal, Merete</au><au>Takats, Zoltan</au><au>Janfelt, Christian</au><au>Lerche, Catharina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</atitle><jtitle>Experimental dermatology</jtitle><addtitle>Exp Dermatol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>33</volume><issue>7</issue><spage>e15141</spage><epage>n/a</epage><pages>e15141-n/a</pages><issn>0906-6705</issn><issn>1600-0625</issn><eissn>1600-0625</eissn><abstract>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39036889</pmid><doi>10.1111/exd.15141</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4626-3426</orcidid><orcidid>https://orcid.org/0000-0002-2300-8481</orcidid><orcidid>https://orcid.org/0000-0003-2173-0769</orcidid><orcidid>https://orcid.org/0000-0002-6941-053X</orcidid><orcidid>https://orcid.org/0000-0002-1007-317X</orcidid><orcidid>https://orcid.org/0000-0001-7360-7418</orcidid><orcidid>https://orcid.org/0000-0003-1250-2035</orcidid><orcidid>https://orcid.org/0000-0002-0795-3467</orcidid><orcidid>https://orcid.org/0000-0003-3653-6424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0906-6705 |
ispartof | Experimental dermatology, 2024-07, Vol.33 (7), p.e15141-n/a |
issn | 0906-6705 1600-0625 1600-0625 |
language | eng |
recordid | cdi_proquest_miscellaneous_3083219610 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Animals Basal cell carcinoma bioinformatics Biomarkers, Tumor - metabolism Carcinoma Carcinoma, Basal Cell - diagnosis Carcinoma, Basal Cell - metabolism Humans keratinocyte cancer Learning algorithms lipidomics Machine Learning mass spectrometry imaging Mass spectroscopy Metabolomics Metabolomics - methods Mice Public health Sensitivity analysis Sensitivity and Specificity Skin Neoplasms - diagnosis Skin Neoplasms - metabolism Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Tumors |
title | Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20profiling%20and%20accurate%20diagnosis%20of%20basal%20cell%20carcinoma%20by%20MALDI%20imaging%20and%20machine%20learning&rft.jtitle=Experimental%20dermatology&rft.au=Brorsen,%20Lauritz%20F.&rft.date=2024-07&rft.volume=33&rft.issue=7&rft.spage=e15141&rft.epage=n/a&rft.pages=e15141-n/a&rft.issn=0906-6705&rft.eissn=1600-0625&rft_id=info:doi/10.1111/exd.15141&rft_dat=%3Cproquest_cross%3E3083219610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084597194&rft_id=info:pmid/39036889&rfr_iscdi=true |