Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning

Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental dermatology 2024-07, Vol.33 (7), p.e15141-n/a
Hauptverfasser: Brorsen, Lauritz F., McKenzie, James S., Pinto, Fernanda E., Glud, Martin, Hansen, Harald S., Haedersdal, Merete, Takats, Zoltan, Janfelt, Christian, Lerche, Catharina M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e15141
container_title Experimental dermatology
container_volume 33
creator Brorsen, Lauritz F.
McKenzie, James S.
Pinto, Fernanda E.
Glud, Martin
Hansen, Harald S.
Haedersdal, Merete
Takats, Zoltan
Janfelt, Christian
Lerche, Catharina M.
description Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.
doi_str_mv 10.1111/exd.15141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083219610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083219610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEgvFx4A-gSFzgUJY0bdIc0TZg0iYuIHGrnDQdmdoGklWwf0_GBgckfLAl6_Er2y9C55Tc0BhD81nd0JxmdA8NKCckITzN99GASMITLkh-hI5DWBJCBRP5ITpikjBeFHKAlnOzAuUa11qN37yrbWO7BYauwqB172FlcGVh0blgA3Y1VhCgwdo0MYHXtnMtYLXG89vZeIptC4uf-Rb0q-0Mbgz4LjZP0UENTTBnu3qCnu8mT6OHZPZ4Px3dzhKdZowmFQeqKs6A5VwIZuqMsrxIc6V1loKhREktNMuEEjUoISkruC5qUlc8FRIKdoKutrrxnPfehFXZ2rBZGDrj-lAyUrCUSk5JRC__oEvX-y5ut6GyXAoqs0hdbyntXQje1OWbj4f6dUlJuTGgjAaU3wZE9mKn2KvWVL_kz8cjMNwCH7Yx6_-VysnLeCv5BSa0jns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084597194</pqid></control><display><type>article</type><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</creator><creatorcontrib>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</creatorcontrib><description>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</description><identifier>ISSN: 0906-6705</identifier><identifier>ISSN: 1600-0625</identifier><identifier>EISSN: 1600-0625</identifier><identifier>DOI: 10.1111/exd.15141</identifier><identifier>PMID: 39036889</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Animals ; Basal cell carcinoma ; bioinformatics ; Biomarkers, Tumor - metabolism ; Carcinoma ; Carcinoma, Basal Cell - diagnosis ; Carcinoma, Basal Cell - metabolism ; Humans ; keratinocyte cancer ; Learning algorithms ; lipidomics ; Machine Learning ; mass spectrometry imaging ; Mass spectroscopy ; Metabolomics ; Metabolomics - methods ; Mice ; Public health ; Sensitivity analysis ; Sensitivity and Specificity ; Skin Neoplasms - diagnosis ; Skin Neoplasms - metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Tumors</subject><ispartof>Experimental dermatology, 2024-07, Vol.33 (7), p.e15141-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Experimental Dermatology published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</cites><orcidid>0000-0002-4626-3426 ; 0000-0002-2300-8481 ; 0000-0003-2173-0769 ; 0000-0002-6941-053X ; 0000-0002-1007-317X ; 0000-0001-7360-7418 ; 0000-0003-1250-2035 ; 0000-0002-0795-3467 ; 0000-0003-3653-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexd.15141$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexd.15141$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39036889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brorsen, Lauritz F.</creatorcontrib><creatorcontrib>McKenzie, James S.</creatorcontrib><creatorcontrib>Pinto, Fernanda E.</creatorcontrib><creatorcontrib>Glud, Martin</creatorcontrib><creatorcontrib>Hansen, Harald S.</creatorcontrib><creatorcontrib>Haedersdal, Merete</creatorcontrib><creatorcontrib>Takats, Zoltan</creatorcontrib><creatorcontrib>Janfelt, Christian</creatorcontrib><creatorcontrib>Lerche, Catharina M.</creatorcontrib><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><title>Experimental dermatology</title><addtitle>Exp Dermatol</addtitle><description>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Basal cell carcinoma</subject><subject>bioinformatics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Carcinoma</subject><subject>Carcinoma, Basal Cell - diagnosis</subject><subject>Carcinoma, Basal Cell - metabolism</subject><subject>Humans</subject><subject>keratinocyte cancer</subject><subject>Learning algorithms</subject><subject>lipidomics</subject><subject>Machine Learning</subject><subject>mass spectrometry imaging</subject><subject>Mass spectroscopy</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Mice</subject><subject>Public health</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - metabolism</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Tumors</subject><issn>0906-6705</issn><issn>1600-0625</issn><issn>1600-0625</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1PwzAMhiMEgvFx4A-gSFzgUJY0bdIc0TZg0iYuIHGrnDQdmdoGklWwf0_GBgckfLAl6_Er2y9C55Tc0BhD81nd0JxmdA8NKCckITzN99GASMITLkh-hI5DWBJCBRP5ITpikjBeFHKAlnOzAuUa11qN37yrbWO7BYauwqB172FlcGVh0blgA3Y1VhCgwdo0MYHXtnMtYLXG89vZeIptC4uf-Rb0q-0Mbgz4LjZP0UENTTBnu3qCnu8mT6OHZPZ4Px3dzhKdZowmFQeqKs6A5VwIZuqMsrxIc6V1loKhREktNMuEEjUoISkruC5qUlc8FRIKdoKutrrxnPfehFXZ2rBZGDrj-lAyUrCUSk5JRC__oEvX-y5ut6GyXAoqs0hdbyntXQje1OWbj4f6dUlJuTGgjAaU3wZE9mKn2KvWVL_kz8cjMNwCH7Yx6_-VysnLeCv5BSa0jns</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Brorsen, Lauritz F.</creator><creator>McKenzie, James S.</creator><creator>Pinto, Fernanda E.</creator><creator>Glud, Martin</creator><creator>Hansen, Harald S.</creator><creator>Haedersdal, Merete</creator><creator>Takats, Zoltan</creator><creator>Janfelt, Christian</creator><creator>Lerche, Catharina M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4626-3426</orcidid><orcidid>https://orcid.org/0000-0002-2300-8481</orcidid><orcidid>https://orcid.org/0000-0003-2173-0769</orcidid><orcidid>https://orcid.org/0000-0002-6941-053X</orcidid><orcidid>https://orcid.org/0000-0002-1007-317X</orcidid><orcidid>https://orcid.org/0000-0001-7360-7418</orcidid><orcidid>https://orcid.org/0000-0003-1250-2035</orcidid><orcidid>https://orcid.org/0000-0002-0795-3467</orcidid><orcidid>https://orcid.org/0000-0003-3653-6424</orcidid></search><sort><creationdate>202407</creationdate><title>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</title><author>Brorsen, Lauritz F. ; McKenzie, James S. ; Pinto, Fernanda E. ; Glud, Martin ; Hansen, Harald S. ; Haedersdal, Merete ; Takats, Zoltan ; Janfelt, Christian ; Lerche, Catharina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2431-d6a1bd63a356773ef4135825bcc42ae10b9c7c347b7fab791386c8f0fd6279a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Basal cell carcinoma</topic><topic>bioinformatics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Carcinoma</topic><topic>Carcinoma, Basal Cell - diagnosis</topic><topic>Carcinoma, Basal Cell - metabolism</topic><topic>Humans</topic><topic>keratinocyte cancer</topic><topic>Learning algorithms</topic><topic>lipidomics</topic><topic>Machine Learning</topic><topic>mass spectrometry imaging</topic><topic>Mass spectroscopy</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Mice</topic><topic>Public health</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - metabolism</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brorsen, Lauritz F.</creatorcontrib><creatorcontrib>McKenzie, James S.</creatorcontrib><creatorcontrib>Pinto, Fernanda E.</creatorcontrib><creatorcontrib>Glud, Martin</creatorcontrib><creatorcontrib>Hansen, Harald S.</creatorcontrib><creatorcontrib>Haedersdal, Merete</creatorcontrib><creatorcontrib>Takats, Zoltan</creatorcontrib><creatorcontrib>Janfelt, Christian</creatorcontrib><creatorcontrib>Lerche, Catharina M.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brorsen, Lauritz F.</au><au>McKenzie, James S.</au><au>Pinto, Fernanda E.</au><au>Glud, Martin</au><au>Hansen, Harald S.</au><au>Haedersdal, Merete</au><au>Takats, Zoltan</au><au>Janfelt, Christian</au><au>Lerche, Catharina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning</atitle><jtitle>Experimental dermatology</jtitle><addtitle>Exp Dermatol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>33</volume><issue>7</issue><spage>e15141</spage><epage>n/a</epage><pages>e15141-n/a</pages><issn>0906-6705</issn><issn>1600-0625</issn><eissn>1600-0625</eissn><abstract>Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI‐MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39036889</pmid><doi>10.1111/exd.15141</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4626-3426</orcidid><orcidid>https://orcid.org/0000-0002-2300-8481</orcidid><orcidid>https://orcid.org/0000-0003-2173-0769</orcidid><orcidid>https://orcid.org/0000-0002-6941-053X</orcidid><orcidid>https://orcid.org/0000-0002-1007-317X</orcidid><orcidid>https://orcid.org/0000-0001-7360-7418</orcidid><orcidid>https://orcid.org/0000-0003-1250-2035</orcidid><orcidid>https://orcid.org/0000-0002-0795-3467</orcidid><orcidid>https://orcid.org/0000-0003-3653-6424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-6705
ispartof Experimental dermatology, 2024-07, Vol.33 (7), p.e15141-n/a
issn 0906-6705
1600-0625
1600-0625
language eng
recordid cdi_proquest_miscellaneous_3083219610
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Animals
Basal cell carcinoma
bioinformatics
Biomarkers, Tumor - metabolism
Carcinoma
Carcinoma, Basal Cell - diagnosis
Carcinoma, Basal Cell - metabolism
Humans
keratinocyte cancer
Learning algorithms
lipidomics
Machine Learning
mass spectrometry imaging
Mass spectroscopy
Metabolomics
Metabolomics - methods
Mice
Public health
Sensitivity analysis
Sensitivity and Specificity
Skin Neoplasms - diagnosis
Skin Neoplasms - metabolism
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Tumors
title Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20profiling%20and%20accurate%20diagnosis%20of%20basal%20cell%20carcinoma%20by%20MALDI%20imaging%20and%20machine%20learning&rft.jtitle=Experimental%20dermatology&rft.au=Brorsen,%20Lauritz%20F.&rft.date=2024-07&rft.volume=33&rft.issue=7&rft.spage=e15141&rft.epage=n/a&rft.pages=e15141-n/a&rft.issn=0906-6705&rft.eissn=1600-0625&rft_id=info:doi/10.1111/exd.15141&rft_dat=%3Cproquest_cross%3E3083219610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084597194&rft_id=info:pmid/39036889&rfr_iscdi=true