Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage

MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (30), p.39437-39446
Hauptverfasser: Gong, Fenglian, Xiao, Ying, He, Gang, Zhang, Tonghui, Hu, Shilin, Chen, Jun, Liu, Wei, Chen, Shimou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39446
container_issue 30
container_start_page 39437
container_title ACS applied materials & interfaces
container_volume 16
creator Gong, Fenglian
Xiao, Ying
He, Gang
Zhang, Tonghui
Hu, Shilin
Chen, Jun
Liu, Wei
Chen, Shimou
description MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.
doi_str_mv 10.1021/acsami.4c08480
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082958730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153705354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-2babeac4c3043f1b851a1bd798bd617d9814090af1e273ae4a5d08de34a0eb2a3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRsFavnvcoSuo-m81RJVqhPqD1HCbZSZPS7tZsiva_d6XFq4dhXh8fzPwIueRsxJngt1AFWLcjVTGjDDsiA54plRihxfFfrdQpOQthydhYCqYHxN97Z5PcLVqH2KGlL36Ggr6C86FB7AP9avuG5t8bcDaup7DDLtDYxKC569qqiWM-p-8NBKS17-ikXTSrHc3ruq1adH10u6Gz3newwHNyUsMq4MUhD8nHYz5_mCTTt6fnh7tpAtyM-0SUUCJUqpJMyZqXRnPgpU0zU9oxT21muGIZg5qjSCWgAm2ZsSgVMCwFyCG52vtuOv-5xdAX6zZUuFqBQ78NheRapkxLrf6XMiMybVLJovR6L42_LpZ-27l4Q8FZ8Qug2AMoDgDkD1QreUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082958730</pqid></control><display><type>article</type><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><source>ACS Publications</source><creator>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</creator><creatorcontrib>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</creatorcontrib><description>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c08480</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>anodes ; carbon ; Energy, Environmental, and Catalysis Applications ; longevity ; nanosheets ; physiological transport</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (30), p.39437-39446</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1807-4246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c08480$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c08480$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gong, Fenglian</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>He, Gang</creatorcontrib><creatorcontrib>Zhang, Tonghui</creatorcontrib><creatorcontrib>Hu, Shilin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Shimou</creatorcontrib><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</description><subject>anodes</subject><subject>carbon</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>longevity</subject><subject>nanosheets</subject><subject>physiological transport</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRsFavnvcoSuo-m81RJVqhPqD1HCbZSZPS7tZsiva_d6XFq4dhXh8fzPwIueRsxJngt1AFWLcjVTGjDDsiA54plRihxfFfrdQpOQthydhYCqYHxN97Z5PcLVqH2KGlL36Ggr6C86FB7AP9avuG5t8bcDaup7DDLtDYxKC569qqiWM-p-8NBKS17-ikXTSrHc3ruq1adH10u6Gz3newwHNyUsMq4MUhD8nHYz5_mCTTt6fnh7tpAtyM-0SUUCJUqpJMyZqXRnPgpU0zU9oxT21muGIZg5qjSCWgAm2ZsSgVMCwFyCG52vtuOv-5xdAX6zZUuFqBQ78NheRapkxLrf6XMiMybVLJovR6L42_LpZ-27l4Q8FZ8Qug2AMoDgDkD1QreUs</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Gong, Fenglian</creator><creator>Xiao, Ying</creator><creator>He, Gang</creator><creator>Zhang, Tonghui</creator><creator>Hu, Shilin</creator><creator>Chen, Jun</creator><creator>Liu, Wei</creator><creator>Chen, Shimou</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1807-4246</orcidid></search><sort><creationdate>20240731</creationdate><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><author>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-2babeac4c3043f1b851a1bd798bd617d9814090af1e273ae4a5d08de34a0eb2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>carbon</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>longevity</topic><topic>nanosheets</topic><topic>physiological transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Fenglian</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>He, Gang</creatorcontrib><creatorcontrib>Zhang, Tonghui</creatorcontrib><creatorcontrib>Hu, Shilin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Shimou</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Fenglian</au><au>Xiao, Ying</au><au>He, Gang</au><au>Zhang, Tonghui</au><au>Hu, Shilin</au><au>Chen, Jun</au><au>Liu, Wei</au><au>Chen, Shimou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>16</volume><issue>30</issue><spage>39437</spage><epage>39446</epage><pages>39437-39446</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c08480</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1807-4246</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (30), p.39437-39446
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3082958730
source ACS Publications
subjects anodes
carbon
Energy, Environmental, and Catalysis Applications
longevity
nanosheets
physiological transport
title Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond-Engineered%20MoSe2%20Nanosheets%20with%20Expanded%20Layers%20and%20an%20Enriched%201T%20Phase%20for%20Highly%20Efficient%20Na+%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gong,%20Fenglian&rft.date=2024-07-31&rft.volume=16&rft.issue=30&rft.spage=39437&rft.epage=39446&rft.pages=39437-39446&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c08480&rft_dat=%3Cproquest_acs_j%3E3153705354%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082958730&rft_id=info:pmid/&rfr_iscdi=true