Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage
MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capabilit...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (30), p.39437-39446 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39446 |
---|---|
container_issue | 30 |
container_start_page | 39437 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Gong, Fenglian Xiao, Ying He, Gang Zhang, Tonghui Hu, Shilin Chen, Jun Liu, Wei Chen, Shimou |
description | MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan. |
doi_str_mv | 10.1021/acsami.4c08480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082958730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153705354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-2babeac4c3043f1b851a1bd798bd617d9814090af1e273ae4a5d08de34a0eb2a3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRsFavnvcoSuo-m81RJVqhPqD1HCbZSZPS7tZsiva_d6XFq4dhXh8fzPwIueRsxJngt1AFWLcjVTGjDDsiA54plRihxfFfrdQpOQthydhYCqYHxN97Z5PcLVqH2KGlL36Ggr6C86FB7AP9avuG5t8bcDaup7DDLtDYxKC569qqiWM-p-8NBKS17-ikXTSrHc3ruq1adH10u6Gz3newwHNyUsMq4MUhD8nHYz5_mCTTt6fnh7tpAtyM-0SUUCJUqpJMyZqXRnPgpU0zU9oxT21muGIZg5qjSCWgAm2ZsSgVMCwFyCG52vtuOv-5xdAX6zZUuFqBQ78NheRapkxLrf6XMiMybVLJovR6L42_LpZ-27l4Q8FZ8Qug2AMoDgDkD1QreUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082958730</pqid></control><display><type>article</type><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><source>ACS Publications</source><creator>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</creator><creatorcontrib>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</creatorcontrib><description>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c08480</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>anodes ; carbon ; Energy, Environmental, and Catalysis Applications ; longevity ; nanosheets ; physiological transport</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (30), p.39437-39446</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1807-4246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c08480$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c08480$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gong, Fenglian</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>He, Gang</creatorcontrib><creatorcontrib>Zhang, Tonghui</creatorcontrib><creatorcontrib>Hu, Shilin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Shimou</creatorcontrib><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</description><subject>anodes</subject><subject>carbon</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>longevity</subject><subject>nanosheets</subject><subject>physiological transport</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRsFavnvcoSuo-m81RJVqhPqD1HCbZSZPS7tZsiva_d6XFq4dhXh8fzPwIueRsxJngt1AFWLcjVTGjDDsiA54plRihxfFfrdQpOQthydhYCqYHxN97Z5PcLVqH2KGlL36Ggr6C86FB7AP9avuG5t8bcDaup7DDLtDYxKC569qqiWM-p-8NBKS17-ikXTSrHc3ruq1adH10u6Gz3newwHNyUsMq4MUhD8nHYz5_mCTTt6fnh7tpAtyM-0SUUCJUqpJMyZqXRnPgpU0zU9oxT21muGIZg5qjSCWgAm2ZsSgVMCwFyCG52vtuOv-5xdAX6zZUuFqBQ78NheRapkxLrf6XMiMybVLJovR6L42_LpZ-27l4Q8FZ8Qug2AMoDgDkD1QreUs</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Gong, Fenglian</creator><creator>Xiao, Ying</creator><creator>He, Gang</creator><creator>Zhang, Tonghui</creator><creator>Hu, Shilin</creator><creator>Chen, Jun</creator><creator>Liu, Wei</creator><creator>Chen, Shimou</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1807-4246</orcidid></search><sort><creationdate>20240731</creationdate><title>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</title><author>Gong, Fenglian ; Xiao, Ying ; He, Gang ; Zhang, Tonghui ; Hu, Shilin ; Chen, Jun ; Liu, Wei ; Chen, Shimou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-2babeac4c3043f1b851a1bd798bd617d9814090af1e273ae4a5d08de34a0eb2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anodes</topic><topic>carbon</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>longevity</topic><topic>nanosheets</topic><topic>physiological transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Fenglian</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>He, Gang</creatorcontrib><creatorcontrib>Zhang, Tonghui</creatorcontrib><creatorcontrib>Hu, Shilin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Shimou</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Fenglian</au><au>Xiao, Ying</au><au>He, Gang</au><au>Zhang, Tonghui</au><au>Hu, Shilin</au><au>Chen, Jun</au><au>Liu, Wei</au><au>Chen, Shimou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>16</volume><issue>30</issue><spage>39437</spage><epage>39446</epage><pages>39437-39446</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P–Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P–Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g–1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g–1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c08480</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1807-4246</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (30), p.39437-39446 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082958730 |
source | ACS Publications |
subjects | anodes carbon Energy, Environmental, and Catalysis Applications longevity nanosheets physiological transport |
title | Bond-Engineered MoSe2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na+ Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond-Engineered%20MoSe2%20Nanosheets%20with%20Expanded%20Layers%20and%20an%20Enriched%201T%20Phase%20for%20Highly%20Efficient%20Na+%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gong,%20Fenglian&rft.date=2024-07-31&rft.volume=16&rft.issue=30&rft.spage=39437&rft.epage=39446&rft.pages=39437-39446&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c08480&rft_dat=%3Cproquest_acs_j%3E3153705354%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082958730&rft_id=info:pmid/&rfr_iscdi=true |