Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors

The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (39), p.e2313694-n/a
Hauptverfasser: Chen, Sihan, Zhang, Yue, King, William P., Bashir, Rashid, van der Zande, Arend M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e2313694
container_title Advanced materials (Weinheim)
container_volume 36
creator Chen, Sihan
Zhang, Yue
King, William P.
Bashir, Rashid
van der Zande, Arend M.
description The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. This study presents edge passivation for p‐type monolayer WSe2 nanoribbon transistors using nanolithography and a controlled remote O2 plasma process. The edge passivation material consists of amorphous WOxSey. Compared to microribbons, nanoribbons with passivated edges exhibit reduced defect density and increased p‐doping, whereas nanoribbons with open edges exhibit higher defect densities and reduced p‐doping.
doi_str_mv 10.1002/adma.202313694
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082310436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082310436</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2364-37e6708b26d1b0daed21644dd25b0c1abf8072cbc1894b5742af75fe9476c3a23</originalsourceid><addsrcrecordid>eNpdkM1KAzEUhYMoWKtb1wNu3Ey9-ZnMZFlq_YFWBSsuw80kI1Omk5p0lO58BJ_RJ7Gl0oWry4GPw7kfIecUBhSAXaFd4IAB45RLJQ5Ij2aMpgJUdkh6oHiWKimKY3IS4xwAlATZI_nYvrmfr-8njLH-wJWzydS3vsG1C8nrs2PJA7Y-1Mb4NpkFbGMdVz7EU3JUYRPd2d_tk5eb8Wx0l04eb-9Hw0m6ZFyKlOdO5lAYJi01YNFZRqUQ1rLMQEnRVAXkrDQlLZQwWS4YVnlWOSVyWXJkvE8ud73L4N87F1d6UcfSNQ22zndRcyg2D4PgcoNe_EPnvgvtZp3mlAIDCWJLqR31WTdurZehXmBYawp6K1FvJeq9RD28ng73if8CkDZnVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110206046</pqid></control><display><type>article</type><title>Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors</title><source>Wiley Online Library All Journals</source><creator>Chen, Sihan ; Zhang, Yue ; King, William P. ; Bashir, Rashid ; van der Zande, Arend M.</creator><creatorcontrib>Chen, Sihan ; Zhang, Yue ; King, William P. ; Bashir, Rashid ; van der Zande, Arend M.</creatorcontrib><description>The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. This study presents edge passivation for p‐type monolayer WSe2 nanoribbon transistors using nanolithography and a controlled remote O2 plasma process. The edge passivation material consists of amorphous WOxSey. Compared to microribbons, nanoribbons with passivated edges exhibit reduced defect density and increased p‐doping, whereas nanoribbons with open edges exhibit higher defect densities and reduced p‐doping.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313694</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>edge passivation ; Electrical properties ; Field effect transistors ; Free surfaces ; Minimal surfaces ; monolayer ; Monolayers ; Nanolithography ; nanoribbon ; Nanoribbons ; Optical properties ; Optoelectronics ; Oxidation ; Oxygen plasma ; Passivity ; scanning probe lithography ; Scanning transmission electron microscopy ; Transistors ; Transition metal compounds ; tungsten oxyselenide ; WSe2</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2313694-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5104-9646 ; 0000-0001-8606-1290 ; 0000-0003-1216-6422 ; 0000-0002-3087-6965 ; 0000-0002-7225-9180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202313694$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202313694$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Sihan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Bashir, Rashid</creatorcontrib><creatorcontrib>van der Zande, Arend M.</creatorcontrib><title>Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors</title><title>Advanced materials (Weinheim)</title><description>The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. This study presents edge passivation for p‐type monolayer WSe2 nanoribbon transistors using nanolithography and a controlled remote O2 plasma process. The edge passivation material consists of amorphous WOxSey. Compared to microribbons, nanoribbons with passivated edges exhibit reduced defect density and increased p‐doping, whereas nanoribbons with open edges exhibit higher defect densities and reduced p‐doping.</description><subject>edge passivation</subject><subject>Electrical properties</subject><subject>Field effect transistors</subject><subject>Free surfaces</subject><subject>Minimal surfaces</subject><subject>monolayer</subject><subject>Monolayers</subject><subject>Nanolithography</subject><subject>nanoribbon</subject><subject>Nanoribbons</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Oxidation</subject><subject>Oxygen plasma</subject><subject>Passivity</subject><subject>scanning probe lithography</subject><subject>Scanning transmission electron microscopy</subject><subject>Transistors</subject><subject>Transition metal compounds</subject><subject>tungsten oxyselenide</subject><subject>WSe2</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkM1KAzEUhYMoWKtb1wNu3Ey9-ZnMZFlq_YFWBSsuw80kI1Omk5p0lO58BJ_RJ7Gl0oWry4GPw7kfIecUBhSAXaFd4IAB45RLJQ5Ij2aMpgJUdkh6oHiWKimKY3IS4xwAlATZI_nYvrmfr-8njLH-wJWzydS3vsG1C8nrs2PJA7Y-1Mb4NpkFbGMdVz7EU3JUYRPd2d_tk5eb8Wx0l04eb-9Hw0m6ZFyKlOdO5lAYJi01YNFZRqUQ1rLMQEnRVAXkrDQlLZQwWS4YVnlWOSVyWXJkvE8ud73L4N87F1d6UcfSNQ22zndRcyg2D4PgcoNe_EPnvgvtZp3mlAIDCWJLqR31WTdurZehXmBYawp6K1FvJeq9RD28ng73if8CkDZnVA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Chen, Sihan</creator><creator>Zhang, Yue</creator><creator>King, William P.</creator><creator>Bashir, Rashid</creator><creator>van der Zande, Arend M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5104-9646</orcidid><orcidid>https://orcid.org/0000-0001-8606-1290</orcidid><orcidid>https://orcid.org/0000-0003-1216-6422</orcidid><orcidid>https://orcid.org/0000-0002-3087-6965</orcidid><orcidid>https://orcid.org/0000-0002-7225-9180</orcidid></search><sort><creationdate>20240901</creationdate><title>Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors</title><author>Chen, Sihan ; Zhang, Yue ; King, William P. ; Bashir, Rashid ; van der Zande, Arend M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2364-37e6708b26d1b0daed21644dd25b0c1abf8072cbc1894b5742af75fe9476c3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>edge passivation</topic><topic>Electrical properties</topic><topic>Field effect transistors</topic><topic>Free surfaces</topic><topic>Minimal surfaces</topic><topic>monolayer</topic><topic>Monolayers</topic><topic>Nanolithography</topic><topic>nanoribbon</topic><topic>Nanoribbons</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Oxidation</topic><topic>Oxygen plasma</topic><topic>Passivity</topic><topic>scanning probe lithography</topic><topic>Scanning transmission electron microscopy</topic><topic>Transistors</topic><topic>Transition metal compounds</topic><topic>tungsten oxyselenide</topic><topic>WSe2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sihan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Bashir, Rashid</creatorcontrib><creatorcontrib>van der Zande, Arend M.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sihan</au><au>Zhang, Yue</au><au>King, William P.</au><au>Bashir, Rashid</au><au>van der Zande, Arend M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>39</issue><spage>e2313694</spage><epage>n/a</epage><pages>e2313694-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. This study presents edge passivation for p‐type monolayer WSe2 nanoribbon transistors using nanolithography and a controlled remote O2 plasma process. The edge passivation material consists of amorphous WOxSey. Compared to microribbons, nanoribbons with passivated edges exhibit reduced defect density and increased p‐doping, whereas nanoribbons with open edges exhibit higher defect densities and reduced p‐doping.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202313694</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5104-9646</orcidid><orcidid>https://orcid.org/0000-0001-8606-1290</orcidid><orcidid>https://orcid.org/0000-0003-1216-6422</orcidid><orcidid>https://orcid.org/0000-0002-3087-6965</orcidid><orcidid>https://orcid.org/0000-0002-7225-9180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2313694-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3082310436
source Wiley Online Library All Journals
subjects edge passivation
Electrical properties
Field effect transistors
Free surfaces
Minimal surfaces
monolayer
Monolayers
Nanolithography
nanoribbon
Nanoribbons
Optical properties
Optoelectronics
Oxidation
Oxygen plasma
Passivity
scanning probe lithography
Scanning transmission electron microscopy
Transistors
Transition metal compounds
tungsten oxyselenide
WSe2
title Edge‐Passivated Monolayer WSe2 Nanoribbon Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%E2%80%90Passivated%20Monolayer%20WSe2%20Nanoribbon%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Sihan&rft.date=2024-09-01&rft.volume=36&rft.issue=39&rft.spage=e2313694&rft.epage=n/a&rft.pages=e2313694-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313694&rft_dat=%3Cproquest_wiley%3E3082310436%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110206046&rft_id=info:pmid/&rfr_iscdi=true