Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications

There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2024-10, Vol.13 (27), p.e2401202-n/a
Hauptverfasser: Johansen, Åshild, Lin, Jinjian, Yamada, Shuntaro, Mohamed‐Ahmed, Samih, Yassin, Mohammed A., Gjerde, Cecilie, Hutchinson, Daniel J., Mustafa, Kamal, Malkoch, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page e2401202
container_title Advanced healthcare materials
container_volume 13
creator Johansen, Åshild
Lin, Jinjian
Yamada, Shuntaro
Mohamed‐Ahmed, Samih
Yassin, Mohammed A.
Gjerde, Cecilie
Hutchinson, Daniel J.
Mustafa, Kamal
Malkoch, Michael
description There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications. In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.
doi_str_mv 10.1002/adhm.202401202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082309814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082309814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</originalsourceid><addsrcrecordid>eNqFkc1OAjEQgBujEYJcPZpNvHhZ7M8WukeCKCYYScRz0-52YXF3u7ZsDJ58BJ_RJ3EIiIkXe2ink2--TGYQOie4RzCm1ypdlj2KaYQJ3EeoTUlMQ9rn8fEhjnALdb1fYTh9TvqCnKIWizElVLA2KmZLu7ZfH5-jIk9elC5MMHe5es8rA0kIbQWZpXGl9WbtA-WDmbNl7vNqEbCb4ClRWWaL1AeZdcE8974xwbhaQL1xW2ZY12BWaxD5M3SSqcKb7v7toOfb8Xw0CaePd_ej4TRMKBc07LOUc6E5YwMdCU2VJloQZmKcpjhKeSYSpoEQRnCi4KuJig3JNBURwIp10NXOWzv72hi_ltBwYopCVcY2XjIsKMOxIBGgl3_QlW1cBd1JRmBGA84oA6q3oxJnvXcmk7XLS-U2kmC5XYXcrkIeVgEFF3tto0uTHvCfwQMQ74C3vDCbf3RyeDN5-JV_A2oPlto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121275323</pqid></control><display><type>article</type><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</creator><creatorcontrib>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</creatorcontrib><description>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications. In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202401202</identifier><identifier>PMID: 39021283</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adipocytes ; Animals ; Apoptosis ; biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Bone marrow ; Cell differentiation ; Cell proliferation ; Cell Proliferation - drug effects ; Click Chemistry - methods ; Compression ; Glass transition ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Necrosis ; Neural stem cells ; Photochemistry ; Printing, Three-Dimensional ; regenerative medicine ; Room temperature ; Scaffolding ; Scaffolds ; Stem cells ; thermoset ; thiol‐ene ; thiol‐yne ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Triazine ; Triazines - chemistry ; Triazines - pharmacology ; triester‐triazine‐trione</subject><ispartof>Advanced healthcare materials, 2024-10, Vol.13 (27), p.e2401202-n/a</ispartof><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</cites><orcidid>0000-0002-1099-5940 ; 0000-0003-0282-5498 ; 0000-0002-2968-2856 ; 0000-0003-0028-1204 ; 0000-0002-9200-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202401202$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202401202$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39021283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johansen, Åshild</creatorcontrib><creatorcontrib>Lin, Jinjian</creatorcontrib><creatorcontrib>Yamada, Shuntaro</creatorcontrib><creatorcontrib>Mohamed‐Ahmed, Samih</creatorcontrib><creatorcontrib>Yassin, Mohammed A.</creatorcontrib><creatorcontrib>Gjerde, Cecilie</creatorcontrib><creatorcontrib>Hutchinson, Daniel J.</creatorcontrib><creatorcontrib>Mustafa, Kamal</creatorcontrib><creatorcontrib>Malkoch, Michael</creatorcontrib><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications. In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</description><subject>Adipocytes</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bone marrow</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Click Chemistry - methods</subject><subject>Compression</subject><subject>Glass transition</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Necrosis</subject><subject>Neural stem cells</subject><subject>Photochemistry</subject><subject>Printing, Three-Dimensional</subject><subject>regenerative medicine</subject><subject>Room temperature</subject><subject>Scaffolding</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>thermoset</subject><subject>thiol‐ene</subject><subject>thiol‐yne</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Triazine</subject><subject>Triazines - chemistry</subject><subject>Triazines - pharmacology</subject><subject>triester‐triazine‐trione</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1OAjEQgBujEYJcPZpNvHhZ7M8WukeCKCYYScRz0-52YXF3u7ZsDJ58BJ_RJ3EIiIkXe2ink2--TGYQOie4RzCm1ypdlj2KaYQJ3EeoTUlMQ9rn8fEhjnALdb1fYTh9TvqCnKIWizElVLA2KmZLu7ZfH5-jIk9elC5MMHe5es8rA0kIbQWZpXGl9WbtA-WDmbNl7vNqEbCb4ClRWWaL1AeZdcE8974xwbhaQL1xW2ZY12BWaxD5M3SSqcKb7v7toOfb8Xw0CaePd_ej4TRMKBc07LOUc6E5YwMdCU2VJloQZmKcpjhKeSYSpoEQRnCi4KuJig3JNBURwIp10NXOWzv72hi_ltBwYopCVcY2XjIsKMOxIBGgl3_QlW1cBd1JRmBGA84oA6q3oxJnvXcmk7XLS-U2kmC5XYXcrkIeVgEFF3tto0uTHvCfwQMQ74C3vDCbf3RyeDN5-JV_A2oPlto</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Johansen, Åshild</creator><creator>Lin, Jinjian</creator><creator>Yamada, Shuntaro</creator><creator>Mohamed‐Ahmed, Samih</creator><creator>Yassin, Mohammed A.</creator><creator>Gjerde, Cecilie</creator><creator>Hutchinson, Daniel J.</creator><creator>Mustafa, Kamal</creator><creator>Malkoch, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1099-5940</orcidid><orcidid>https://orcid.org/0000-0003-0282-5498</orcidid><orcidid>https://orcid.org/0000-0002-2968-2856</orcidid><orcidid>https://orcid.org/0000-0003-0028-1204</orcidid><orcidid>https://orcid.org/0000-0002-9200-8004</orcidid></search><sort><creationdate>20241001</creationdate><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><author>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipocytes</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bone marrow</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Click Chemistry - methods</topic><topic>Compression</topic><topic>Glass transition</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Necrosis</topic><topic>Neural stem cells</topic><topic>Photochemistry</topic><topic>Printing, Three-Dimensional</topic><topic>regenerative medicine</topic><topic>Room temperature</topic><topic>Scaffolding</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>thermoset</topic><topic>thiol‐ene</topic><topic>thiol‐yne</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Triazine</topic><topic>Triazines - chemistry</topic><topic>Triazines - pharmacology</topic><topic>triester‐triazine‐trione</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansen, Åshild</creatorcontrib><creatorcontrib>Lin, Jinjian</creatorcontrib><creatorcontrib>Yamada, Shuntaro</creatorcontrib><creatorcontrib>Mohamed‐Ahmed, Samih</creatorcontrib><creatorcontrib>Yassin, Mohammed A.</creatorcontrib><creatorcontrib>Gjerde, Cecilie</creatorcontrib><creatorcontrib>Hutchinson, Daniel J.</creatorcontrib><creatorcontrib>Mustafa, Kamal</creatorcontrib><creatorcontrib>Malkoch, Michael</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansen, Åshild</au><au>Lin, Jinjian</au><au>Yamada, Shuntaro</au><au>Mohamed‐Ahmed, Samih</au><au>Yassin, Mohammed A.</au><au>Gjerde, Cecilie</au><au>Hutchinson, Daniel J.</au><au>Mustafa, Kamal</au><au>Malkoch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>27</issue><spage>e2401202</spage><epage>n/a</epage><pages>e2401202-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications. In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39021283</pmid><doi>10.1002/adhm.202401202</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1099-5940</orcidid><orcidid>https://orcid.org/0000-0003-0282-5498</orcidid><orcidid>https://orcid.org/0000-0002-2968-2856</orcidid><orcidid>https://orcid.org/0000-0003-0028-1204</orcidid><orcidid>https://orcid.org/0000-0002-9200-8004</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2024-10, Vol.13 (27), p.e2401202-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_proquest_miscellaneous_3082309814
source MEDLINE; Wiley Journals
subjects Adipocytes
Animals
Apoptosis
biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Bone marrow
Cell differentiation
Cell proliferation
Cell Proliferation - drug effects
Click Chemistry - methods
Compression
Glass transition
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Necrosis
Neural stem cells
Photochemistry
Printing, Three-Dimensional
regenerative medicine
Room temperature
Scaffolding
Scaffolds
Stem cells
thermoset
thiol‐ene
thiol‐yne
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Triazine
Triazines - chemistry
Triazines - pharmacology
triester‐triazine‐trione
title Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Clickable%20Triazine%E2%80%90Trione%20Thermosets%20as%20Promising%203D%20Scaffolds%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Johansen,%20%C3%85shild&rft.date=2024-10-01&rft.volume=13&rft.issue=27&rft.spage=e2401202&rft.epage=n/a&rft.pages=e2401202-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202401202&rft_dat=%3Cproquest_cross%3E3082309814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121275323&rft_id=info:pmid/39021283&rfr_iscdi=true