Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications
There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffol...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-10, Vol.13 (27), p.e2401202-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | e2401202 |
container_title | Advanced healthcare materials |
container_volume | 13 |
creator | Johansen, Åshild Lin, Jinjian Yamada, Shuntaro Mohamed‐Ahmed, Samih Yassin, Mohammed A. Gjerde, Cecilie Hutchinson, Daniel J. Mustafa, Kamal Malkoch, Michael |
description | There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.
In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis. |
doi_str_mv | 10.1002/adhm.202401202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082309814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082309814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</originalsourceid><addsrcrecordid>eNqFkc1OAjEQgBujEYJcPZpNvHhZ7M8WukeCKCYYScRz0-52YXF3u7ZsDJ58BJ_RJ3EIiIkXe2ink2--TGYQOie4RzCm1ypdlj2KaYQJ3EeoTUlMQ9rn8fEhjnALdb1fYTh9TvqCnKIWizElVLA2KmZLu7ZfH5-jIk9elC5MMHe5es8rA0kIbQWZpXGl9WbtA-WDmbNl7vNqEbCb4ClRWWaL1AeZdcE8974xwbhaQL1xW2ZY12BWaxD5M3SSqcKb7v7toOfb8Xw0CaePd_ej4TRMKBc07LOUc6E5YwMdCU2VJloQZmKcpjhKeSYSpoEQRnCi4KuJig3JNBURwIp10NXOWzv72hi_ltBwYopCVcY2XjIsKMOxIBGgl3_QlW1cBd1JRmBGA84oA6q3oxJnvXcmk7XLS-U2kmC5XYXcrkIeVgEFF3tto0uTHvCfwQMQ74C3vDCbf3RyeDN5-JV_A2oPlto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121275323</pqid></control><display><type>article</type><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</creator><creatorcontrib>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</creatorcontrib><description>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.
In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202401202</identifier><identifier>PMID: 39021283</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adipocytes ; Animals ; Apoptosis ; biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Bone marrow ; Cell differentiation ; Cell proliferation ; Cell Proliferation - drug effects ; Click Chemistry - methods ; Compression ; Glass transition ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Necrosis ; Neural stem cells ; Photochemistry ; Printing, Three-Dimensional ; regenerative medicine ; Room temperature ; Scaffolding ; Scaffolds ; Stem cells ; thermoset ; thiol‐ene ; thiol‐yne ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Triazine ; Triazines - chemistry ; Triazines - pharmacology ; triester‐triazine‐trione</subject><ispartof>Advanced healthcare materials, 2024-10, Vol.13 (27), p.e2401202-n/a</ispartof><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</cites><orcidid>0000-0002-1099-5940 ; 0000-0003-0282-5498 ; 0000-0002-2968-2856 ; 0000-0003-0028-1204 ; 0000-0002-9200-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202401202$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202401202$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39021283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johansen, Åshild</creatorcontrib><creatorcontrib>Lin, Jinjian</creatorcontrib><creatorcontrib>Yamada, Shuntaro</creatorcontrib><creatorcontrib>Mohamed‐Ahmed, Samih</creatorcontrib><creatorcontrib>Yassin, Mohammed A.</creatorcontrib><creatorcontrib>Gjerde, Cecilie</creatorcontrib><creatorcontrib>Hutchinson, Daniel J.</creatorcontrib><creatorcontrib>Mustafa, Kamal</creatorcontrib><creatorcontrib>Malkoch, Michael</creatorcontrib><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.
In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</description><subject>Adipocytes</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bone marrow</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Click Chemistry - methods</subject><subject>Compression</subject><subject>Glass transition</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Necrosis</subject><subject>Neural stem cells</subject><subject>Photochemistry</subject><subject>Printing, Three-Dimensional</subject><subject>regenerative medicine</subject><subject>Room temperature</subject><subject>Scaffolding</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>thermoset</subject><subject>thiol‐ene</subject><subject>thiol‐yne</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Triazine</subject><subject>Triazines - chemistry</subject><subject>Triazines - pharmacology</subject><subject>triester‐triazine‐trione</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1OAjEQgBujEYJcPZpNvHhZ7M8WukeCKCYYScRz0-52YXF3u7ZsDJ58BJ_RJ3EIiIkXe2ink2--TGYQOie4RzCm1ypdlj2KaYQJ3EeoTUlMQ9rn8fEhjnALdb1fYTh9TvqCnKIWizElVLA2KmZLu7ZfH5-jIk9elC5MMHe5es8rA0kIbQWZpXGl9WbtA-WDmbNl7vNqEbCb4ClRWWaL1AeZdcE8974xwbhaQL1xW2ZY12BWaxD5M3SSqcKb7v7toOfb8Xw0CaePd_ej4TRMKBc07LOUc6E5YwMdCU2VJloQZmKcpjhKeSYSpoEQRnCi4KuJig3JNBURwIp10NXOWzv72hi_ltBwYopCVcY2XjIsKMOxIBGgl3_QlW1cBd1JRmBGA84oA6q3oxJnvXcmk7XLS-U2kmC5XYXcrkIeVgEFF3tto0uTHvCfwQMQ74C3vDCbf3RyeDN5-JV_A2oPlto</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Johansen, Åshild</creator><creator>Lin, Jinjian</creator><creator>Yamada, Shuntaro</creator><creator>Mohamed‐Ahmed, Samih</creator><creator>Yassin, Mohammed A.</creator><creator>Gjerde, Cecilie</creator><creator>Hutchinson, Daniel J.</creator><creator>Mustafa, Kamal</creator><creator>Malkoch, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1099-5940</orcidid><orcidid>https://orcid.org/0000-0003-0282-5498</orcidid><orcidid>https://orcid.org/0000-0002-2968-2856</orcidid><orcidid>https://orcid.org/0000-0003-0028-1204</orcidid><orcidid>https://orcid.org/0000-0002-9200-8004</orcidid></search><sort><creationdate>20241001</creationdate><title>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</title><author>Johansen, Åshild ; Lin, Jinjian ; Yamada, Shuntaro ; Mohamed‐Ahmed, Samih ; Yassin, Mohammed A. ; Gjerde, Cecilie ; Hutchinson, Daniel J. ; Mustafa, Kamal ; Malkoch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-63d558b5337b48b2ab1b813e90dd04d5f8c3b5588e851a5f8b1a9e1fb2842aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipocytes</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bone marrow</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Click Chemistry - methods</topic><topic>Compression</topic><topic>Glass transition</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Necrosis</topic><topic>Neural stem cells</topic><topic>Photochemistry</topic><topic>Printing, Three-Dimensional</topic><topic>regenerative medicine</topic><topic>Room temperature</topic><topic>Scaffolding</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>thermoset</topic><topic>thiol‐ene</topic><topic>thiol‐yne</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Triazine</topic><topic>Triazines - chemistry</topic><topic>Triazines - pharmacology</topic><topic>triester‐triazine‐trione</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansen, Åshild</creatorcontrib><creatorcontrib>Lin, Jinjian</creatorcontrib><creatorcontrib>Yamada, Shuntaro</creatorcontrib><creatorcontrib>Mohamed‐Ahmed, Samih</creatorcontrib><creatorcontrib>Yassin, Mohammed A.</creatorcontrib><creatorcontrib>Gjerde, Cecilie</creatorcontrib><creatorcontrib>Hutchinson, Daniel J.</creatorcontrib><creatorcontrib>Mustafa, Kamal</creatorcontrib><creatorcontrib>Malkoch, Michael</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansen, Åshild</au><au>Lin, Jinjian</au><au>Yamada, Shuntaro</au><au>Mohamed‐Ahmed, Samih</au><au>Yassin, Mohammed A.</au><au>Gjerde, Cecilie</au><au>Hutchinson, Daniel J.</au><au>Mustafa, Kamal</au><au>Malkoch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>27</issue><spage>e2401202</spage><epage>n/a</epage><pages>e2401202-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.
In this study, researchers propose a solvent‐free approach for the fabrication of novel scaffolding materials using two‐component heterocyclic triazine‐trione formulations, which cure in seconds at room temperature via thiol‐ene/yne photochemistry. The materials are suitable for bone tissue engineering, featuring excellent cytocompatibility, fast cell proliferation, and differentiation of bone marrow mesenchymal stem cells into osteoblasts, adipocytes, and neuronal cells, while minimizing cell apoptosis and necrosis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39021283</pmid><doi>10.1002/adhm.202401202</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1099-5940</orcidid><orcidid>https://orcid.org/0000-0003-0282-5498</orcidid><orcidid>https://orcid.org/0000-0002-2968-2856</orcidid><orcidid>https://orcid.org/0000-0003-0028-1204</orcidid><orcidid>https://orcid.org/0000-0002-9200-8004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-10, Vol.13 (27), p.e2401202-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082309814 |
source | MEDLINE; Wiley Journals |
subjects | Adipocytes Animals Apoptosis biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Bone marrow Cell differentiation Cell proliferation Cell Proliferation - drug effects Click Chemistry - methods Compression Glass transition Mesenchymal stem cells Mesenchymal Stem Cells - cytology Necrosis Neural stem cells Photochemistry Printing, Three-Dimensional regenerative medicine Room temperature Scaffolding Scaffolds Stem cells thermoset thiol‐ene thiol‐yne Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry Triazine Triazines - chemistry Triazines - pharmacology triester‐triazine‐trione |
title | Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Clickable%20Triazine%E2%80%90Trione%20Thermosets%20as%20Promising%203D%20Scaffolds%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Johansen,%20%C3%85shild&rft.date=2024-10-01&rft.volume=13&rft.issue=27&rft.spage=e2401202&rft.epage=n/a&rft.pages=e2401202-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202401202&rft_dat=%3Cproquest_cross%3E3082309814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121275323&rft_id=info:pmid/39021283&rfr_iscdi=true |