Identification of plant transcriptional activation domains

Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabido...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-08, Vol.632 (8023), p.166-173
Hauptverfasser: Morffy, Nicholas, Van den Broeck, Lisa, Miller, Caelan, Emenecker, Ryan J., Bryant, John A., Lee, Tyler M., Sageman-Furnas, Katelyn, Wilkinson, Edward G., Pathak, Sunita, Kotha, Sanjana R., Lam, Angelica, Mahatma, Saloni, Pande, Vikram, Waoo, Aman, Wright, R. Clay, Holehouse, Alex S., Staller, Max V., Sozzani, Rosangela, Strader, Lucia C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 8023
container_start_page 166
container_title Nature (London)
container_volume 632
creator Morffy, Nicholas
Van den Broeck, Lisa
Miller, Caelan
Emenecker, Ryan J.
Bryant, John A.
Lee, Tyler M.
Sageman-Furnas, Katelyn
Wilkinson, Edward G.
Pathak, Sunita
Kotha, Sanjana R.
Lam, Angelica
Mahatma, Saloni
Pande, Vikram
Waoo, Aman
Wright, R. Clay
Holehouse, Alex S.
Staller, Max V.
Sozzani, Rosangela
Strader, Lucia C.
description Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs 1 . To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs. A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in Arabidopsis transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.
doi_str_mv 10.1038/s41586-024-07707-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082308394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091181917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</originalsourceid><addsrcrecordid>eNp9kM9LBCEYhiWKdtv6BzrEQpculp86o3aLpV-w0KXO4jhOuMyvdCbov89ttoIOHUTQ53u_lwehUyCXQJi8ihwymWNCOSZCEIHZHpoDFznmuRT7aE4IlZhIls_QUYwbQkgGgh-iGVOEEhD5HF0_lq4dfOWtGXzXLrtq2demHZZDMG20wffbZ1MvjR38-8SUXWN8G4_RQWXq6E529wK93N0-rx7w-un-cXWzxpZyYBgKYaQBagpgQIFZUNRVmZCMZopnQihJcwpUSVVYVjLOS0ZTaV5UNqs4ZQt0MeX2oXsbXRx046N1darpujFqRiRNhyme0PM_6KYbQ6q_pRSABAUiUXSibOhiDK7SffCNCR8aiN6a1ZNZnczqL7OapaGzXfRYNK78GflWmQA2ATF9ta8u_O7-J_YTlrSBIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091181917</pqid></control><display><type>article</type><title>Identification of plant transcriptional activation domains</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</creator><creatorcontrib>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</creatorcontrib><description>Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs 1 . To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs. A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in Arabidopsis transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07707-3</identifier><identifier>PMID: 39020176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/337/572 ; 631/449/1659 ; Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - classification ; Arabidopsis Proteins - metabolism ; Conserved sequence ; Conserved Sequence - genetics ; Datasets ; Datasets as Topic ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Genomes ; Humanities and Social Sciences ; Indoleacetic Acids - metabolism ; Intrinsically Disordered Proteins ; Molecular Sequence Annotation ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Prediction models ; Protein Domains ; Proteins ; Proteome - chemistry ; Proteome - metabolism ; Proteomes ; Science ; Science (multidisciplinary) ; Transcription activation ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - classification ; Transcription Factors - metabolism ; Transcriptional Activation - genetics ; Yeast ; Yeasts</subject><ispartof>Nature (London), 2024-08, Vol.632 (8023), p.166-173</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Aug 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</cites><orcidid>0000-0002-4155-5729 ; 0009-0008-5707-3506 ; 0000-0001-7125-3943 ; 0000-0001-7055-2773 ; 0009-0005-6657-1898 ; 0000-0002-7600-7204 ; 0009-0005-5806-0385 ; 0000-0001-9094-5697 ; 0000-0003-2878-2027 ; 0009-0001-5944-2327 ; 0000-0003-0226-0757 ; 0000-0003-3316-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07707-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07707-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39020176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morffy, Nicholas</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Miller, Caelan</creatorcontrib><creatorcontrib>Emenecker, Ryan J.</creatorcontrib><creatorcontrib>Bryant, John A.</creatorcontrib><creatorcontrib>Lee, Tyler M.</creatorcontrib><creatorcontrib>Sageman-Furnas, Katelyn</creatorcontrib><creatorcontrib>Wilkinson, Edward G.</creatorcontrib><creatorcontrib>Pathak, Sunita</creatorcontrib><creatorcontrib>Kotha, Sanjana R.</creatorcontrib><creatorcontrib>Lam, Angelica</creatorcontrib><creatorcontrib>Mahatma, Saloni</creatorcontrib><creatorcontrib>Pande, Vikram</creatorcontrib><creatorcontrib>Waoo, Aman</creatorcontrib><creatorcontrib>Wright, R. Clay</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Staller, Max V.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Strader, Lucia C.</creatorcontrib><title>Identification of plant transcriptional activation domains</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs 1 . To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs. A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in Arabidopsis transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</description><subject>38/39</subject><subject>631/337/572</subject><subject>631/449/1659</subject><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - classification</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Conserved sequence</subject><subject>Conserved Sequence - genetics</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Intrinsically Disordered Proteins</subject><subject>Molecular Sequence Annotation</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Prediction models</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - classification</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LBCEYhiWKdtv6BzrEQpculp86o3aLpV-w0KXO4jhOuMyvdCbov89ttoIOHUTQ53u_lwehUyCXQJi8ihwymWNCOSZCEIHZHpoDFznmuRT7aE4IlZhIls_QUYwbQkgGgh-iGVOEEhD5HF0_lq4dfOWtGXzXLrtq2demHZZDMG20wffbZ1MvjR38-8SUXWN8G4_RQWXq6E529wK93N0-rx7w-un-cXWzxpZyYBgKYaQBagpgQIFZUNRVmZCMZopnQihJcwpUSVVYVjLOS0ZTaV5UNqs4ZQt0MeX2oXsbXRx046N1darpujFqRiRNhyme0PM_6KYbQ6q_pRSABAUiUXSibOhiDK7SffCNCR8aiN6a1ZNZnczqL7OapaGzXfRYNK78GflWmQA2ATF9ta8u_O7-J_YTlrSBIg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Morffy, Nicholas</creator><creator>Van den Broeck, Lisa</creator><creator>Miller, Caelan</creator><creator>Emenecker, Ryan J.</creator><creator>Bryant, John A.</creator><creator>Lee, Tyler M.</creator><creator>Sageman-Furnas, Katelyn</creator><creator>Wilkinson, Edward G.</creator><creator>Pathak, Sunita</creator><creator>Kotha, Sanjana R.</creator><creator>Lam, Angelica</creator><creator>Mahatma, Saloni</creator><creator>Pande, Vikram</creator><creator>Waoo, Aman</creator><creator>Wright, R. Clay</creator><creator>Holehouse, Alex S.</creator><creator>Staller, Max V.</creator><creator>Sozzani, Rosangela</creator><creator>Strader, Lucia C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid><orcidid>https://orcid.org/0009-0008-5707-3506</orcidid><orcidid>https://orcid.org/0000-0001-7125-3943</orcidid><orcidid>https://orcid.org/0000-0001-7055-2773</orcidid><orcidid>https://orcid.org/0009-0005-6657-1898</orcidid><orcidid>https://orcid.org/0000-0002-7600-7204</orcidid><orcidid>https://orcid.org/0009-0005-5806-0385</orcidid><orcidid>https://orcid.org/0000-0001-9094-5697</orcidid><orcidid>https://orcid.org/0000-0003-2878-2027</orcidid><orcidid>https://orcid.org/0009-0001-5944-2327</orcidid><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid></search><sort><creationdate>20240801</creationdate><title>Identification of plant transcriptional activation domains</title><author>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>631/337/572</topic><topic>631/449/1659</topic><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - classification</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Conserved sequence</topic><topic>Conserved Sequence - genetics</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Intrinsically Disordered Proteins</topic><topic>Molecular Sequence Annotation</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Prediction models</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - classification</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morffy, Nicholas</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Miller, Caelan</creatorcontrib><creatorcontrib>Emenecker, Ryan J.</creatorcontrib><creatorcontrib>Bryant, John A.</creatorcontrib><creatorcontrib>Lee, Tyler M.</creatorcontrib><creatorcontrib>Sageman-Furnas, Katelyn</creatorcontrib><creatorcontrib>Wilkinson, Edward G.</creatorcontrib><creatorcontrib>Pathak, Sunita</creatorcontrib><creatorcontrib>Kotha, Sanjana R.</creatorcontrib><creatorcontrib>Lam, Angelica</creatorcontrib><creatorcontrib>Mahatma, Saloni</creatorcontrib><creatorcontrib>Pande, Vikram</creatorcontrib><creatorcontrib>Waoo, Aman</creatorcontrib><creatorcontrib>Wright, R. Clay</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Staller, Max V.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Strader, Lucia C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morffy, Nicholas</au><au>Van den Broeck, Lisa</au><au>Miller, Caelan</au><au>Emenecker, Ryan J.</au><au>Bryant, John A.</au><au>Lee, Tyler M.</au><au>Sageman-Furnas, Katelyn</au><au>Wilkinson, Edward G.</au><au>Pathak, Sunita</au><au>Kotha, Sanjana R.</au><au>Lam, Angelica</au><au>Mahatma, Saloni</au><au>Pande, Vikram</au><au>Waoo, Aman</au><au>Wright, R. Clay</au><au>Holehouse, Alex S.</au><au>Staller, Max V.</au><au>Sozzani, Rosangela</au><au>Strader, Lucia C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of plant transcriptional activation domains</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>632</volume><issue>8023</issue><spage>166</spage><epage>173</epage><pages>166-173</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs 1 . To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs. A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in Arabidopsis transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39020176</pmid><doi>10.1038/s41586-024-07707-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid><orcidid>https://orcid.org/0009-0008-5707-3506</orcidid><orcidid>https://orcid.org/0000-0001-7125-3943</orcidid><orcidid>https://orcid.org/0000-0001-7055-2773</orcidid><orcidid>https://orcid.org/0009-0005-6657-1898</orcidid><orcidid>https://orcid.org/0000-0002-7600-7204</orcidid><orcidid>https://orcid.org/0009-0005-5806-0385</orcidid><orcidid>https://orcid.org/0000-0001-9094-5697</orcidid><orcidid>https://orcid.org/0000-0003-2878-2027</orcidid><orcidid>https://orcid.org/0009-0001-5944-2327</orcidid><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-08, Vol.632 (8023), p.166-173
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3082308394
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 38/39
631/337/572
631/449/1659
Arabidopsis
Arabidopsis - chemistry
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - classification
Arabidopsis Proteins - metabolism
Conserved sequence
Conserved Sequence - genetics
Datasets
Datasets as Topic
Gene expression
Gene Expression Regulation, Plant - genetics
Genomes
Humanities and Social Sciences
Indoleacetic Acids - metabolism
Intrinsically Disordered Proteins
Molecular Sequence Annotation
multidisciplinary
Neural networks
Neural Networks, Computer
Prediction models
Protein Domains
Proteins
Proteome - chemistry
Proteome - metabolism
Proteomes
Science
Science (multidisciplinary)
Transcription activation
Transcription factors
Transcription Factors - chemistry
Transcription Factors - classification
Transcription Factors - metabolism
Transcriptional Activation - genetics
Yeast
Yeasts
title Identification of plant transcriptional activation domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20plant%20transcriptional%20activation%20domains&rft.jtitle=Nature%20(London)&rft.au=Morffy,%20Nicholas&rft.date=2024-08-01&rft.volume=632&rft.issue=8023&rft.spage=166&rft.epage=173&rft.pages=166-173&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07707-3&rft_dat=%3Cproquest_cross%3E3091181917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091181917&rft_id=info:pmid/39020176&rfr_iscdi=true