Identification of plant transcriptional activation domains
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabido...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-08, Vol.632 (8023), p.166-173 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 8023 |
container_start_page | 166 |
container_title | Nature (London) |
container_volume | 632 |
creator | Morffy, Nicholas Van den Broeck, Lisa Miller, Caelan Emenecker, Ryan J. Bryant, John A. Lee, Tyler M. Sageman-Furnas, Katelyn Wilkinson, Edward G. Pathak, Sunita Kotha, Sanjana R. Lam, Angelica Mahatma, Saloni Pande, Vikram Waoo, Aman Wright, R. Clay Holehouse, Alex S. Staller, Max V. Sozzani, Rosangela Strader, Lucia C. |
description | Gene expression in
Arabidopsis
is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all
Arabidopsis
TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs
1
. To address this gap, here we use a yeast library approach to experimentally identify
Arabidopsis
ADs on a proteome-wide scale, and find that more than half of the
Arabidopsis
TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in
Arabidopsis
transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features. |
doi_str_mv | 10.1038/s41586-024-07707-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082308394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091181917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</originalsourceid><addsrcrecordid>eNp9kM9LBCEYhiWKdtv6BzrEQpculp86o3aLpV-w0KXO4jhOuMyvdCbov89ttoIOHUTQ53u_lwehUyCXQJi8ihwymWNCOSZCEIHZHpoDFznmuRT7aE4IlZhIls_QUYwbQkgGgh-iGVOEEhD5HF0_lq4dfOWtGXzXLrtq2demHZZDMG20wffbZ1MvjR38-8SUXWN8G4_RQWXq6E529wK93N0-rx7w-un-cXWzxpZyYBgKYaQBagpgQIFZUNRVmZCMZopnQihJcwpUSVVYVjLOS0ZTaV5UNqs4ZQt0MeX2oXsbXRx046N1darpujFqRiRNhyme0PM_6KYbQ6q_pRSABAUiUXSibOhiDK7SffCNCR8aiN6a1ZNZnczqL7OapaGzXfRYNK78GflWmQA2ATF9ta8u_O7-J_YTlrSBIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091181917</pqid></control><display><type>article</type><title>Identification of plant transcriptional activation domains</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</creator><creatorcontrib>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</creatorcontrib><description>Gene expression in
Arabidopsis
is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all
Arabidopsis
TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs
1
. To address this gap, here we use a yeast library approach to experimentally identify
Arabidopsis
ADs on a proteome-wide scale, and find that more than half of the
Arabidopsis
TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in
Arabidopsis
transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07707-3</identifier><identifier>PMID: 39020176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/337/572 ; 631/449/1659 ; Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - classification ; Arabidopsis Proteins - metabolism ; Conserved sequence ; Conserved Sequence - genetics ; Datasets ; Datasets as Topic ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Genomes ; Humanities and Social Sciences ; Indoleacetic Acids - metabolism ; Intrinsically Disordered Proteins ; Molecular Sequence Annotation ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Prediction models ; Protein Domains ; Proteins ; Proteome - chemistry ; Proteome - metabolism ; Proteomes ; Science ; Science (multidisciplinary) ; Transcription activation ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - classification ; Transcription Factors - metabolism ; Transcriptional Activation - genetics ; Yeast ; Yeasts</subject><ispartof>Nature (London), 2024-08, Vol.632 (8023), p.166-173</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Aug 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</cites><orcidid>0000-0002-4155-5729 ; 0009-0008-5707-3506 ; 0000-0001-7125-3943 ; 0000-0001-7055-2773 ; 0009-0005-6657-1898 ; 0000-0002-7600-7204 ; 0009-0005-5806-0385 ; 0000-0001-9094-5697 ; 0000-0003-2878-2027 ; 0009-0001-5944-2327 ; 0000-0003-0226-0757 ; 0000-0003-3316-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07707-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07707-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39020176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morffy, Nicholas</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Miller, Caelan</creatorcontrib><creatorcontrib>Emenecker, Ryan J.</creatorcontrib><creatorcontrib>Bryant, John A.</creatorcontrib><creatorcontrib>Lee, Tyler M.</creatorcontrib><creatorcontrib>Sageman-Furnas, Katelyn</creatorcontrib><creatorcontrib>Wilkinson, Edward G.</creatorcontrib><creatorcontrib>Pathak, Sunita</creatorcontrib><creatorcontrib>Kotha, Sanjana R.</creatorcontrib><creatorcontrib>Lam, Angelica</creatorcontrib><creatorcontrib>Mahatma, Saloni</creatorcontrib><creatorcontrib>Pande, Vikram</creatorcontrib><creatorcontrib>Waoo, Aman</creatorcontrib><creatorcontrib>Wright, R. Clay</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Staller, Max V.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Strader, Lucia C.</creatorcontrib><title>Identification of plant transcriptional activation domains</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gene expression in
Arabidopsis
is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all
Arabidopsis
TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs
1
. To address this gap, here we use a yeast library approach to experimentally identify
Arabidopsis
ADs on a proteome-wide scale, and find that more than half of the
Arabidopsis
TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in
Arabidopsis
transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</description><subject>38/39</subject><subject>631/337/572</subject><subject>631/449/1659</subject><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - classification</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Conserved sequence</subject><subject>Conserved Sequence - genetics</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Intrinsically Disordered Proteins</subject><subject>Molecular Sequence Annotation</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Prediction models</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - classification</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LBCEYhiWKdtv6BzrEQpculp86o3aLpV-w0KXO4jhOuMyvdCbov89ttoIOHUTQ53u_lwehUyCXQJi8ihwymWNCOSZCEIHZHpoDFznmuRT7aE4IlZhIls_QUYwbQkgGgh-iGVOEEhD5HF0_lq4dfOWtGXzXLrtq2demHZZDMG20wffbZ1MvjR38-8SUXWN8G4_RQWXq6E529wK93N0-rx7w-un-cXWzxpZyYBgKYaQBagpgQIFZUNRVmZCMZopnQihJcwpUSVVYVjLOS0ZTaV5UNqs4ZQt0MeX2oXsbXRx046N1darpujFqRiRNhyme0PM_6KYbQ6q_pRSABAUiUXSibOhiDK7SffCNCR8aiN6a1ZNZnczqL7OapaGzXfRYNK78GflWmQA2ATF9ta8u_O7-J_YTlrSBIg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Morffy, Nicholas</creator><creator>Van den Broeck, Lisa</creator><creator>Miller, Caelan</creator><creator>Emenecker, Ryan J.</creator><creator>Bryant, John A.</creator><creator>Lee, Tyler M.</creator><creator>Sageman-Furnas, Katelyn</creator><creator>Wilkinson, Edward G.</creator><creator>Pathak, Sunita</creator><creator>Kotha, Sanjana R.</creator><creator>Lam, Angelica</creator><creator>Mahatma, Saloni</creator><creator>Pande, Vikram</creator><creator>Waoo, Aman</creator><creator>Wright, R. Clay</creator><creator>Holehouse, Alex S.</creator><creator>Staller, Max V.</creator><creator>Sozzani, Rosangela</creator><creator>Strader, Lucia C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid><orcidid>https://orcid.org/0009-0008-5707-3506</orcidid><orcidid>https://orcid.org/0000-0001-7125-3943</orcidid><orcidid>https://orcid.org/0000-0001-7055-2773</orcidid><orcidid>https://orcid.org/0009-0005-6657-1898</orcidid><orcidid>https://orcid.org/0000-0002-7600-7204</orcidid><orcidid>https://orcid.org/0009-0005-5806-0385</orcidid><orcidid>https://orcid.org/0000-0001-9094-5697</orcidid><orcidid>https://orcid.org/0000-0003-2878-2027</orcidid><orcidid>https://orcid.org/0009-0001-5944-2327</orcidid><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid></search><sort><creationdate>20240801</creationdate><title>Identification of plant transcriptional activation domains</title><author>Morffy, Nicholas ; Van den Broeck, Lisa ; Miller, Caelan ; Emenecker, Ryan J. ; Bryant, John A. ; Lee, Tyler M. ; Sageman-Furnas, Katelyn ; Wilkinson, Edward G. ; Pathak, Sunita ; Kotha, Sanjana R. ; Lam, Angelica ; Mahatma, Saloni ; Pande, Vikram ; Waoo, Aman ; Wright, R. Clay ; Holehouse, Alex S. ; Staller, Max V. ; Sozzani, Rosangela ; Strader, Lucia C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2413-1b7a8a12ab131213c192ef578325945779826212989bc3d344d320834bfc5f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>631/337/572</topic><topic>631/449/1659</topic><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - classification</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Conserved sequence</topic><topic>Conserved Sequence - genetics</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Intrinsically Disordered Proteins</topic><topic>Molecular Sequence Annotation</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Prediction models</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - classification</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morffy, Nicholas</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Miller, Caelan</creatorcontrib><creatorcontrib>Emenecker, Ryan J.</creatorcontrib><creatorcontrib>Bryant, John A.</creatorcontrib><creatorcontrib>Lee, Tyler M.</creatorcontrib><creatorcontrib>Sageman-Furnas, Katelyn</creatorcontrib><creatorcontrib>Wilkinson, Edward G.</creatorcontrib><creatorcontrib>Pathak, Sunita</creatorcontrib><creatorcontrib>Kotha, Sanjana R.</creatorcontrib><creatorcontrib>Lam, Angelica</creatorcontrib><creatorcontrib>Mahatma, Saloni</creatorcontrib><creatorcontrib>Pande, Vikram</creatorcontrib><creatorcontrib>Waoo, Aman</creatorcontrib><creatorcontrib>Wright, R. Clay</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Staller, Max V.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Strader, Lucia C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morffy, Nicholas</au><au>Van den Broeck, Lisa</au><au>Miller, Caelan</au><au>Emenecker, Ryan J.</au><au>Bryant, John A.</au><au>Lee, Tyler M.</au><au>Sageman-Furnas, Katelyn</au><au>Wilkinson, Edward G.</au><au>Pathak, Sunita</au><au>Kotha, Sanjana R.</au><au>Lam, Angelica</au><au>Mahatma, Saloni</au><au>Pande, Vikram</au><au>Waoo, Aman</au><au>Wright, R. Clay</au><au>Holehouse, Alex S.</au><au>Staller, Max V.</au><au>Sozzani, Rosangela</au><au>Strader, Lucia C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of plant transcriptional activation domains</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>632</volume><issue>8023</issue><spage>166</spage><epage>173</epage><pages>166-173</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Gene expression in
Arabidopsis
is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all
Arabidopsis
TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs
1
. To address this gap, here we use a yeast library approach to experimentally identify
Arabidopsis
ADs on a proteome-wide scale, and find that more than half of the
Arabidopsis
TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
A high-throughput yeast-based assay is used to identify more than 1,500 activation domains (ADs) in
Arabidopsis
transcription factors, and a deep learning approach applied to this dataset can predict AD activity on the basis of sequence features.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39020176</pmid><doi>10.1038/s41586-024-07707-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid><orcidid>https://orcid.org/0009-0008-5707-3506</orcidid><orcidid>https://orcid.org/0000-0001-7125-3943</orcidid><orcidid>https://orcid.org/0000-0001-7055-2773</orcidid><orcidid>https://orcid.org/0009-0005-6657-1898</orcidid><orcidid>https://orcid.org/0000-0002-7600-7204</orcidid><orcidid>https://orcid.org/0009-0005-5806-0385</orcidid><orcidid>https://orcid.org/0000-0001-9094-5697</orcidid><orcidid>https://orcid.org/0000-0003-2878-2027</orcidid><orcidid>https://orcid.org/0009-0001-5944-2327</orcidid><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-08, Vol.632 (8023), p.166-173 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082308394 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 38/39 631/337/572 631/449/1659 Arabidopsis Arabidopsis - chemistry Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - classification Arabidopsis Proteins - metabolism Conserved sequence Conserved Sequence - genetics Datasets Datasets as Topic Gene expression Gene Expression Regulation, Plant - genetics Genomes Humanities and Social Sciences Indoleacetic Acids - metabolism Intrinsically Disordered Proteins Molecular Sequence Annotation multidisciplinary Neural networks Neural Networks, Computer Prediction models Protein Domains Proteins Proteome - chemistry Proteome - metabolism Proteomes Science Science (multidisciplinary) Transcription activation Transcription factors Transcription Factors - chemistry Transcription Factors - classification Transcription Factors - metabolism Transcriptional Activation - genetics Yeast Yeasts |
title | Identification of plant transcriptional activation domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20plant%20transcriptional%20activation%20domains&rft.jtitle=Nature%20(London)&rft.au=Morffy,%20Nicholas&rft.date=2024-08-01&rft.volume=632&rft.issue=8023&rft.spage=166&rft.epage=173&rft.pages=166-173&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07707-3&rft_dat=%3Cproquest_cross%3E3091181917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091181917&rft_id=info:pmid/39020176&rfr_iscdi=true |