Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation

Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2024-06, Vol.109 (6-1), p.064114, Article 064114
Hauptverfasser: Tsironis, Theodoros G, Moustakas, Aris L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6-1
container_start_page 064114
container_title Physical review. E
container_volume 109
creator Tsironis, Theodoros G
Moustakas, Aris L
description Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for various types of channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information has been obtained in the asymptotic limit of large channel matrices. In this paper, we employ methods from statistical physics, namely, the replica approach, to calculate the finite-size correction and the variance of the mutual information with non-Gaussian priors, both for the case of correlated Gaussian and uncorrelated non-Gaussian channel matrices in the same asymptotic limit. Furthermore, using the same methodology, we show that higher order cumulants of the mutual information should vanish in the large-system-size limit. In addition, we obtain closed-form expressions for the minimum mean-square error finite-size corrections and variance for both Gaussian and non-Gaussian channels. Finally, we provide numerical verification of the results using numerical methods on finite-sized systems.
doi_str_mv 10.1103/PhysRevE.109.064114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082308308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082308308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-5b2bfd12fd6ac1361c4c2b6a183317b90872df70ef50a26ed672dbd9c513d50e3</originalsourceid><addsrcrecordid>eNo9UdtKAzEQDaJoqX6BIHn0Zesk2atvUloVBEX0eclmZ2kkm9Rkt1L_wL822irMMLczM8kcQs4ZzBgDcfW02oZn3CxmDKoZ5Clj6QGZ8LSABCATh_9-mp2QsxDeAIDlUBWMH5MTUQGPPp-Qr6W2esAk6E-kynmPatDOUmlbupFeS6uQuo4OK6T9OIzSUG0753v5C4sVH6Gup0ZblJ5iGPS-9qGHFbXOJrdyDCFOomuvnQ_X9IZ6XButJFXSqNH84k_JUSdNwLO9nZLX5eJlfpc8PN7ez28eEsXKbEiyhjddy3jX5lIxkTOVKt7kkpVCsKKpoCx42xWAXQaS59jmMW7aSmVMtBmgmJLL3dy1d-9jfG_d66DQGGnRjaEWUPKoPzIlYgdV3oXgsavjD3rptzWD-oeG-o-GmKjqHQ2x62K_YGx6bP97_o4uvgFW_IfC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082308308</pqid></control><display><type>article</type><title>Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Tsironis, Theodoros G ; Moustakas, Aris L</creator><creatorcontrib>Tsironis, Theodoros G ; Moustakas, Aris L</creatorcontrib><description>Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for various types of channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information has been obtained in the asymptotic limit of large channel matrices. In this paper, we employ methods from statistical physics, namely, the replica approach, to calculate the finite-size correction and the variance of the mutual information with non-Gaussian priors, both for the case of correlated Gaussian and uncorrelated non-Gaussian channel matrices in the same asymptotic limit. Furthermore, using the same methodology, we show that higher order cumulants of the mutual information should vanish in the large-system-size limit. In addition, we obtain closed-form expressions for the minimum mean-square error finite-size corrections and variance for both Gaussian and non-Gaussian channels. Finally, we provide numerical verification of the results using numerical methods on finite-sized systems.</description><identifier>ISSN: 2470-0045</identifier><identifier>ISSN: 2470-0053</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.109.064114</identifier><identifier>PMID: 39020972</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2024-06, Vol.109 (6-1), p.064114, Article 064114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-5b2bfd12fd6ac1361c4c2b6a183317b90872df70ef50a26ed672dbd9c513d50e3</cites><orcidid>0000-0002-9718-7726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39020972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsironis, Theodoros G</creatorcontrib><creatorcontrib>Moustakas, Aris L</creatorcontrib><title>Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for various types of channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information has been obtained in the asymptotic limit of large channel matrices. In this paper, we employ methods from statistical physics, namely, the replica approach, to calculate the finite-size correction and the variance of the mutual information with non-Gaussian priors, both for the case of correlated Gaussian and uncorrelated non-Gaussian channel matrices in the same asymptotic limit. Furthermore, using the same methodology, we show that higher order cumulants of the mutual information should vanish in the large-system-size limit. In addition, we obtain closed-form expressions for the minimum mean-square error finite-size corrections and variance for both Gaussian and non-Gaussian channels. Finally, we provide numerical verification of the results using numerical methods on finite-sized systems.</description><issn>2470-0045</issn><issn>2470-0053</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UdtKAzEQDaJoqX6BIHn0Zesk2atvUloVBEX0eclmZ2kkm9Rkt1L_wL822irMMLczM8kcQs4ZzBgDcfW02oZn3CxmDKoZ5Clj6QGZ8LSABCATh_9-mp2QsxDeAIDlUBWMH5MTUQGPPp-Qr6W2esAk6E-kynmPatDOUmlbupFeS6uQuo4OK6T9OIzSUG0753v5C4sVH6Gup0ZblJ5iGPS-9qGHFbXOJrdyDCFOomuvnQ_X9IZ6XButJFXSqNH84k_JUSdNwLO9nZLX5eJlfpc8PN7ez28eEsXKbEiyhjddy3jX5lIxkTOVKt7kkpVCsKKpoCx42xWAXQaS59jmMW7aSmVMtBmgmJLL3dy1d-9jfG_d66DQGGnRjaEWUPKoPzIlYgdV3oXgsavjD3rptzWD-oeG-o-GmKjqHQ2x62K_YGx6bP97_o4uvgFW_IfC</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Tsironis, Theodoros G</creator><creator>Moustakas, Aris L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9718-7726</orcidid></search><sort><creationdate>202406</creationdate><title>Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation</title><author>Tsironis, Theodoros G ; Moustakas, Aris L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-5b2bfd12fd6ac1361c4c2b6a183317b90872df70ef50a26ed672dbd9c513d50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsironis, Theodoros G</creatorcontrib><creatorcontrib>Moustakas, Aris L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsironis, Theodoros G</au><au>Moustakas, Aris L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2024-06</date><risdate>2024</risdate><volume>109</volume><issue>6-1</issue><spage>064114</spage><pages>064114-</pages><artnum>064114</artnum><issn>2470-0045</issn><issn>2470-0053</issn><eissn>2470-0053</eissn><abstract>Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for various types of channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information has been obtained in the asymptotic limit of large channel matrices. In this paper, we employ methods from statistical physics, namely, the replica approach, to calculate the finite-size correction and the variance of the mutual information with non-Gaussian priors, both for the case of correlated Gaussian and uncorrelated non-Gaussian channel matrices in the same asymptotic limit. Furthermore, using the same methodology, we show that higher order cumulants of the mutual information should vanish in the large-system-size limit. In addition, we obtain closed-form expressions for the minimum mean-square error finite-size corrections and variance for both Gaussian and non-Gaussian channels. Finally, we provide numerical verification of the results using numerical methods on finite-sized systems.</abstract><cop>United States</cop><pmid>39020972</pmid><doi>10.1103/PhysRevE.109.064114</doi><orcidid>https://orcid.org/0000-0002-9718-7726</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2024-06, Vol.109 (6-1), p.064114, Article 064114
issn 2470-0045
2470-0053
2470-0053
language eng
recordid cdi_proquest_miscellaneous_3082308308
source APS: American Physical Society E-Journals (Physics)
title Finite-size correction and variance of the mutual information of random linear estimation with non-Gaussian priors: A replica calculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-size%20correction%20and%20variance%20of%20the%20mutual%20information%20of%20random%20linear%20estimation%20with%20non-Gaussian%20priors:%20A%20replica%20calculation&rft.jtitle=Physical%20review.%20E&rft.au=Tsironis,%20Theodoros%20G&rft.date=2024-06&rft.volume=109&rft.issue=6-1&rft.spage=064114&rft.pages=064114-&rft.artnum=064114&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.109.064114&rft_dat=%3Cproquest_cross%3E3082308308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082308308&rft_id=info:pmid/39020972&rfr_iscdi=true