Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae)
The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga pere...
Gespeichert in:
Veröffentlicht in: | Forensic science international 2024-08, Vol.361, p.112144, Article 112144 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112144 |
container_title | Forensic science international |
container_volume | 361 |
creator | Qu, Hongke Zhang, Xiangyan Ye, Chengxin Ngando, Fernand Jocelin Shang, Yanjie Yang, Fengqin Xiao, Jiao Chen, Sile Guo, Yadong |
description | The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm−1, 1236 cm−1, 1381 cm−1, 1538 cm−1, 1636 cm−1, 2852 cm−1, 2920 cm−1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800–600 cm−1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
•Morphology observed by SEM is helpless in estimating puparium weathering time.•Most absorption peaks in the waveband region of 1800–600 cm−1.•XGBR perform well with the spectral data to estimate weathering time. |
doi_str_mv | 10.1016/j.forsciint.2024.112144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082306006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379073824002251</els_id><sourcerecordid>3082306006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-c30468a051339f91245aea62b00fc084d054fd9aeb6d55c90eb7f9517644ae5d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvCXwBLXMohy_grH9yqhQJSJQ7A2XKcya5XSWxsp6i_gz-Mw5YiceE00swz71h-iuIlhS0FWr05bgcXorF2TlsGTGwpZVSIR8WGNjUrK9bwx8UGeN2WUPPmrDiP8QgAUrLqaXHGW6BN2_BN8XPnps7Odt6T6NGksExEzz2ZtDnYGcmIOvye6nHvgk2HKZLkiA_YW5NIOiD5gTqXsELJTkjcQHDy6Y74xetg9dr4ooNx_qD3mngMuA9r9uU76xMG_fbv2PYaXz8rngx6jPj8vl4U367ff919LG8-f_i0u7opDatlKg0HUTUaJOW8HVrKhNSoK9YBDAYa0YMUQ99q7KpeStMCdvXQSlpXQmiUPb8oLk-5PrjvC8akJhsNjqOe0S1RcWgYhwqgyuirf9CjW8KcX7dSNeO1YCxT9YkywcUYcFA-2EmHO0VBrd7UUT14U6s3dfKWN1_c5y_dhP3D3h9RGbg6AZg_5NZiUDkFZ5M1hKxN9c7-98gvmX6vcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087237422</pqid></control><display><type>article</type><title>Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Qu, Hongke ; Zhang, Xiangyan ; Ye, Chengxin ; Ngando, Fernand Jocelin ; Shang, Yanjie ; Yang, Fengqin ; Xiao, Jiao ; Chen, Sile ; Guo, Yadong</creator><creatorcontrib>Qu, Hongke ; Zhang, Xiangyan ; Ye, Chengxin ; Ngando, Fernand Jocelin ; Shang, Yanjie ; Yang, Fengqin ; Xiao, Jiao ; Chen, Sile ; Guo, Yadong</creatorcontrib><description>The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm−1, 1236 cm−1, 1381 cm−1, 1538 cm−1, 1636 cm−1, 2852 cm−1, 2920 cm−1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800–600 cm−1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
•Morphology observed by SEM is helpless in estimating puparium weathering time.•Most absorption peaks in the waveband region of 1800–600 cm−1.•XGBR perform well with the spectral data to estimate weathering time.</description><identifier>ISSN: 0379-0738</identifier><identifier>ISSN: 1872-6283</identifier><identifier>EISSN: 1872-6283</identifier><identifier>DOI: 10.1016/j.forsciint.2024.112144</identifier><identifier>PMID: 39018983</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Animals ; ATR-FTIR ; Chemical bonds ; Crime scenes ; Diptera ; Electron microscopes ; Entomology ; Error analysis ; Feeding Behavior ; Forensic Entomology ; Forensic science ; Fourier transforms ; Human remains ; Humidity ; Hydrocarbons ; Infrared spectroscopy ; Insects ; Learning algorithms ; Machine Learning ; Microscopy, Electron, Scanning ; Morphology ; PMI ; Postmortem Changes ; Principal Component Analysis ; Principal components analysis ; Pupa ; Puparia ; Puparium ; Regression analysis ; Sarcophagidae ; Scanning electron microscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Wavelengths ; Weather forecasting ; Weathering ; Weathering time</subject><ispartof>Forensic science international, 2024-08, Vol.361, p.112144, Article 112144</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><rights>2024. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-c30468a051339f91245aea62b00fc084d054fd9aeb6d55c90eb7f9517644ae5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3087237422?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39018983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Hongke</creatorcontrib><creatorcontrib>Zhang, Xiangyan</creatorcontrib><creatorcontrib>Ye, Chengxin</creatorcontrib><creatorcontrib>Ngando, Fernand Jocelin</creatorcontrib><creatorcontrib>Shang, Yanjie</creatorcontrib><creatorcontrib>Yang, Fengqin</creatorcontrib><creatorcontrib>Xiao, Jiao</creatorcontrib><creatorcontrib>Chen, Sile</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><title>Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae)</title><title>Forensic science international</title><addtitle>Forensic Sci Int</addtitle><description>The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm−1, 1236 cm−1, 1381 cm−1, 1538 cm−1, 1636 cm−1, 2852 cm−1, 2920 cm−1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800–600 cm−1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
•Morphology observed by SEM is helpless in estimating puparium weathering time.•Most absorption peaks in the waveband region of 1800–600 cm−1.•XGBR perform well with the spectral data to estimate weathering time.</description><subject>Algorithms</subject><subject>Animals</subject><subject>ATR-FTIR</subject><subject>Chemical bonds</subject><subject>Crime scenes</subject><subject>Diptera</subject><subject>Electron microscopes</subject><subject>Entomology</subject><subject>Error analysis</subject><subject>Feeding Behavior</subject><subject>Forensic Entomology</subject><subject>Forensic science</subject><subject>Fourier transforms</subject><subject>Human remains</subject><subject>Humidity</subject><subject>Hydrocarbons</subject><subject>Infrared spectroscopy</subject><subject>Insects</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microscopy, Electron, Scanning</subject><subject>Morphology</subject><subject>PMI</subject><subject>Postmortem Changes</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Pupa</subject><subject>Puparia</subject><subject>Puparium</subject><subject>Regression analysis</subject><subject>Sarcophagidae</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Wavelengths</subject><subject>Weather forecasting</subject><subject>Weathering</subject><subject>Weathering time</subject><issn>0379-0738</issn><issn>1872-6283</issn><issn>1872-6283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhiMEotvCXwBLXMohy_grH9yqhQJSJQ7A2XKcya5XSWxsp6i_gz-Mw5YiceE00swz71h-iuIlhS0FWr05bgcXorF2TlsGTGwpZVSIR8WGNjUrK9bwx8UGeN2WUPPmrDiP8QgAUrLqaXHGW6BN2_BN8XPnps7Odt6T6NGksExEzz2ZtDnYGcmIOvye6nHvgk2HKZLkiA_YW5NIOiD5gTqXsELJTkjcQHDy6Y74xetg9dr4ooNx_qD3mngMuA9r9uU76xMG_fbv2PYaXz8rngx6jPj8vl4U367ff919LG8-f_i0u7opDatlKg0HUTUaJOW8HVrKhNSoK9YBDAYa0YMUQ99q7KpeStMCdvXQSlpXQmiUPb8oLk-5PrjvC8akJhsNjqOe0S1RcWgYhwqgyuirf9CjW8KcX7dSNeO1YCxT9YkywcUYcFA-2EmHO0VBrd7UUT14U6s3dfKWN1_c5y_dhP3D3h9RGbg6AZg_5NZiUDkFZ5M1hKxN9c7-98gvmX6vcA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Qu, Hongke</creator><creator>Zhang, Xiangyan</creator><creator>Ye, Chengxin</creator><creator>Ngando, Fernand Jocelin</creator><creator>Shang, Yanjie</creator><creator>Yang, Fengqin</creator><creator>Xiao, Jiao</creator><creator>Chen, Sile</creator><creator>Guo, Yadong</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202408</creationdate><title>Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae)</title><author>Qu, Hongke ; Zhang, Xiangyan ; Ye, Chengxin ; Ngando, Fernand Jocelin ; Shang, Yanjie ; Yang, Fengqin ; Xiao, Jiao ; Chen, Sile ; Guo, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-c30468a051339f91245aea62b00fc084d054fd9aeb6d55c90eb7f9517644ae5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>ATR-FTIR</topic><topic>Chemical bonds</topic><topic>Crime scenes</topic><topic>Diptera</topic><topic>Electron microscopes</topic><topic>Entomology</topic><topic>Error analysis</topic><topic>Feeding Behavior</topic><topic>Forensic Entomology</topic><topic>Forensic science</topic><topic>Fourier transforms</topic><topic>Human remains</topic><topic>Humidity</topic><topic>Hydrocarbons</topic><topic>Infrared spectroscopy</topic><topic>Insects</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microscopy, Electron, Scanning</topic><topic>Morphology</topic><topic>PMI</topic><topic>Postmortem Changes</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Pupa</topic><topic>Puparia</topic><topic>Puparium</topic><topic>Regression analysis</topic><topic>Sarcophagidae</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Wavelengths</topic><topic>Weather forecasting</topic><topic>Weathering</topic><topic>Weathering time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Hongke</creatorcontrib><creatorcontrib>Zhang, Xiangyan</creatorcontrib><creatorcontrib>Ye, Chengxin</creatorcontrib><creatorcontrib>Ngando, Fernand Jocelin</creatorcontrib><creatorcontrib>Shang, Yanjie</creatorcontrib><creatorcontrib>Yang, Fengqin</creatorcontrib><creatorcontrib>Xiao, Jiao</creatorcontrib><creatorcontrib>Chen, Sile</creatorcontrib><creatorcontrib>Guo, Yadong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Forensic science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Hongke</au><au>Zhang, Xiangyan</au><au>Ye, Chengxin</au><au>Ngando, Fernand Jocelin</au><au>Shang, Yanjie</au><au>Yang, Fengqin</au><au>Xiao, Jiao</au><au>Chen, Sile</au><au>Guo, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae)</atitle><jtitle>Forensic science international</jtitle><addtitle>Forensic Sci Int</addtitle><date>2024-08</date><risdate>2024</risdate><volume>361</volume><spage>112144</spage><pages>112144-</pages><artnum>112144</artnum><issn>0379-0738</issn><issn>1872-6283</issn><eissn>1872-6283</eissn><abstract>The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm−1, 1236 cm−1, 1381 cm−1, 1538 cm−1, 1636 cm−1, 2852 cm−1, 2920 cm−1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800–600 cm−1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
•Morphology observed by SEM is helpless in estimating puparium weathering time.•Most absorption peaks in the waveband region of 1800–600 cm−1.•XGBR perform well with the spectral data to estimate weathering time.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39018983</pmid><doi>10.1016/j.forsciint.2024.112144</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-0738 |
ispartof | Forensic science international, 2024-08, Vol.361, p.112144, Article 112144 |
issn | 0379-0738 1872-6283 1872-6283 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082306006 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Algorithms Animals ATR-FTIR Chemical bonds Crime scenes Diptera Electron microscopes Entomology Error analysis Feeding Behavior Forensic Entomology Forensic science Fourier transforms Human remains Humidity Hydrocarbons Infrared spectroscopy Insects Learning algorithms Machine Learning Microscopy, Electron, Scanning Morphology PMI Postmortem Changes Principal Component Analysis Principal components analysis Pupa Puparia Puparium Regression analysis Sarcophagidae Scanning electron microscopy Spectroscopy, Fourier Transform Infrared Spectrum analysis Wavelengths Weather forecasting Weathering Weathering time |
title | Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20spectrum%20and%20machine%20learning%20algorithms%20to%20predict%20the%20weathering%20time%20of%20empty%20puparia%20of%20Sarcophaga%20peregrine%20(Diptera:%20Sarcophagidae)&rft.jtitle=Forensic%20science%20international&rft.au=Qu,%20Hongke&rft.date=2024-08&rft.volume=361&rft.spage=112144&rft.pages=112144-&rft.artnum=112144&rft.issn=0379-0738&rft.eissn=1872-6283&rft_id=info:doi/10.1016/j.forsciint.2024.112144&rft_dat=%3Cproquest_cross%3E3082306006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087237422&rft_id=info:pmid/39018983&rft_els_id=S0379073824002251&rfr_iscdi=true |