A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin

In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2024-08, Vol.63 (15), p.1955-1962
Hauptverfasser: Ruetz, Markus, Mascarenhas, Romila, Widner, Florian, Kieninger, Christoph, Koutmos, Markos, Kräutler, Bernhard, Banerjee, Ruma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1962
container_issue 15
container_start_page 1955
container_title Biochemistry (Easton)
container_volume 63
creator Ruetz, Markus
Mascarenhas, Romila
Widner, Florian
Kieninger, Christoph
Koutmos, Markos
Kräutler, Bernhard
Banerjee, Ruma
description In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh–carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh–carbon bond formation, converting rhodi­(I)­balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh–carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co–carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.
doi_str_mv 10.1021/acs.biochem.4c00216
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081300177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153708587</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-d6ea06c994ebeba5ab0237e35f1610a157a7d5fb9c2ebd868b9bae98d6756f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwC1g8sqR9TmI7HkvFp1KQKHv07DiqqySG2Bn670nV7kxX7-roSfcQcs9gwSBlSzRhoZ03O9stcgNTJS7IjPEUklwpfklmACCSVAm4Jjch7KczB5nPyPuKfnjdWrqxEVu6HXWILo7R-Z6WFutAo6ePLKVr36CJfqAb1zkzHKg-UKRfO187jS12rr8lVw22wd6dc062z0_f69ek_Hx5W6_KBFPBYlILiyCMUrnVViNHDWkmbcYbJhgg4xJlzRutTGp1XYhCK41WFbWQXDTZnDycvv4M_ne0IVadC8a2LfbWj6HKGM8kFLyQ_6NQsAyAySO6PKGTyWrvx6GfFlQMqqPe6lie9VZnvdkfpPpvnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081300177</pqid></control><display><type>article</type><title>A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin</title><source>American Chemical Society</source><creator>Ruetz, Markus ; Mascarenhas, Romila ; Widner, Florian ; Kieninger, Christoph ; Koutmos, Markos ; Kräutler, Bernhard ; Banerjee, Ruma</creator><creatorcontrib>Ruetz, Markus ; Mascarenhas, Romila ; Widner, Florian ; Kieninger, Christoph ; Koutmos, Markos ; Kräutler, Bernhard ; Banerjee, Ruma</creatorcontrib><description>In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh–carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh–carbon bond formation, converting rhodi­(I)­balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh–carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co–carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.4c00216</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>bacterial growth ; cobalt ; crystal structure ; heterolytic cleavage ; homolytic cleavage ; humans ; methionine synthase ; methylmalonyl-CoA mutase ; Mycobacterium tuberculosis ; rhodium ; vitamin B12</subject><ispartof>Biochemistry (Easton), 2024-08, Vol.63 (15), p.1955-1962</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2222-0587 ; 0000-0002-5099-3528 ; 0000-0001-8332-3275 ; 0000-0001-9540-7310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.4c00216$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.4c00216$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ruetz, Markus</creatorcontrib><creatorcontrib>Mascarenhas, Romila</creatorcontrib><creatorcontrib>Widner, Florian</creatorcontrib><creatorcontrib>Kieninger, Christoph</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><creatorcontrib>Kräutler, Bernhard</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><title>A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh–carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh–carbon bond formation, converting rhodi­(I)­balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh–carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co–carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.</description><subject>bacterial growth</subject><subject>cobalt</subject><subject>crystal structure</subject><subject>heterolytic cleavage</subject><subject>homolytic cleavage</subject><subject>humans</subject><subject>methionine synthase</subject><subject>methylmalonyl-CoA mutase</subject><subject>Mycobacterium tuberculosis</subject><subject>rhodium</subject><subject>vitamin B12</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwC1g8sqR9TmI7HkvFp1KQKHv07DiqqySG2Bn670nV7kxX7-roSfcQcs9gwSBlSzRhoZ03O9stcgNTJS7IjPEUklwpfklmACCSVAm4Jjch7KczB5nPyPuKfnjdWrqxEVu6HXWILo7R-Z6WFutAo6ePLKVr36CJfqAb1zkzHKg-UKRfO187jS12rr8lVw22wd6dc062z0_f69ek_Hx5W6_KBFPBYlILiyCMUrnVViNHDWkmbcYbJhgg4xJlzRutTGp1XYhCK41WFbWQXDTZnDycvv4M_ne0IVadC8a2LfbWj6HKGM8kFLyQ_6NQsAyAySO6PKGTyWrvx6GfFlQMqqPe6lie9VZnvdkfpPpvnw</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Ruetz, Markus</creator><creator>Mascarenhas, Romila</creator><creator>Widner, Florian</creator><creator>Kieninger, Christoph</creator><creator>Koutmos, Markos</creator><creator>Kräutler, Bernhard</creator><creator>Banerjee, Ruma</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2222-0587</orcidid><orcidid>https://orcid.org/0000-0002-5099-3528</orcidid><orcidid>https://orcid.org/0000-0001-8332-3275</orcidid><orcidid>https://orcid.org/0000-0001-9540-7310</orcidid></search><sort><creationdate>20240806</creationdate><title>A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin</title><author>Ruetz, Markus ; Mascarenhas, Romila ; Widner, Florian ; Kieninger, Christoph ; Koutmos, Markos ; Kräutler, Bernhard ; Banerjee, Ruma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-d6ea06c994ebeba5ab0237e35f1610a157a7d5fb9c2ebd868b9bae98d6756f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bacterial growth</topic><topic>cobalt</topic><topic>crystal structure</topic><topic>heterolytic cleavage</topic><topic>homolytic cleavage</topic><topic>humans</topic><topic>methionine synthase</topic><topic>methylmalonyl-CoA mutase</topic><topic>Mycobacterium tuberculosis</topic><topic>rhodium</topic><topic>vitamin B12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruetz, Markus</creatorcontrib><creatorcontrib>Mascarenhas, Romila</creatorcontrib><creatorcontrib>Widner, Florian</creatorcontrib><creatorcontrib>Kieninger, Christoph</creatorcontrib><creatorcontrib>Koutmos, Markos</creatorcontrib><creatorcontrib>Kräutler, Bernhard</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruetz, Markus</au><au>Mascarenhas, Romila</au><au>Widner, Florian</au><au>Kieninger, Christoph</au><au>Koutmos, Markos</au><au>Kräutler, Bernhard</au><au>Banerjee, Ruma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>63</volume><issue>15</issue><spage>1955</spage><epage>1962</epage><pages>1955-1962</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh–carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh–carbon bond formation, converting rhodi­(I)­balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh–carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co–carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.biochem.4c00216</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2222-0587</orcidid><orcidid>https://orcid.org/0000-0002-5099-3528</orcidid><orcidid>https://orcid.org/0000-0001-8332-3275</orcidid><orcidid>https://orcid.org/0000-0001-9540-7310</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2024-08, Vol.63 (15), p.1955-1962
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_proquest_miscellaneous_3081300177
source American Chemical Society
subjects bacterial growth
cobalt
crystal structure
heterolytic cleavage
homolytic cleavage
humans
methionine synthase
methylmalonyl-CoA mutase
Mycobacterium tuberculosis
rhodium
vitamin B12
title A Noble Metal Substitution Leads to B12 Cofactor Mimicry by a Rhodibalamin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Noble%20Metal%20Substitution%20Leads%20to%20B12%20Cofactor%20Mimicry%20by%20a%20Rhodibalamin&rft.jtitle=Biochemistry%20(Easton)&rft.au=Ruetz,%20Markus&rft.date=2024-08-06&rft.volume=63&rft.issue=15&rft.spage=1955&rft.epage=1962&rft.pages=1955-1962&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.4c00216&rft_dat=%3Cproquest_acs_j%3E3153708587%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081300177&rft_id=info:pmid/&rfr_iscdi=true