Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide
The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolutio...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-08, Vol.16 (30), p.14441-14447 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14447 |
---|---|
container_issue | 30 |
container_start_page | 14441 |
container_title | Nanoscale |
container_volume | 16 |
creator | Shehzad, Aamir Cui, Chaonan Cheng, Ran Luo, Zhixun |
description | The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*). |
doi_str_mv | 10.1039/d4nr01984a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081299471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081299471</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-95951d66619aff8a253587a09ae19c92f00c03cc8994145f544d03a76256fdad3</originalsourceid><addsrcrecordid>eNpdjktLAzEcxIMoWB8XP0HAi5fVZPPYzVFKfUDBi57L3yRbU7LJNg-w394VxYOnmYHfDIPQFSW3lDB1Z3hIhKqewxFatISThrGuPf7zkp-is5x3hEjFJFug_cpbXVLUUMAfitM4uDlubcDJmqqLiwGXiGEcY3CA3w8YShydBu8PeEpWu2zxskocIETtay42ZZzrNMVUrMFzfZtg-rDB4vjpjL1AJwP4bC9_9Ry9Paxel0_N-uXxeXm_bibKZWmUUIIaKSVVMAw9tIKJvgOiwFKlVTsQognTuleKUy4GwbkhDDrZCjkYMOwc3fzsTinuq81lM7qsrfcQbKx5w0hP27nc0Rm9_ofuYk1hfvdNqZ5JRQX7Ar_8azY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089836915</pqid></control><display><type>article</type><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><source>Royal Society Of Chemistry Journals</source><creator>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</creator><creatorcontrib>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</creatorcontrib><description>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01984a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Aqueous electrolytes ; Chemical bonds ; Chemical reduction ; Chemical synthesis ; Graphene ; Hydrogen evolution ; Nanoclusters ; Nitrogen ; Nitrogenation ; Quantum chemistry</subject><ispartof>Nanoscale, 2024-08, Vol.16 (30), p.14441-14447</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shehzad, Aamir</creatorcontrib><creatorcontrib>Cui, Chaonan</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Luo, Zhixun</creatorcontrib><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><title>Nanoscale</title><description>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</description><subject>Ammonia</subject><subject>Aqueous electrolytes</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Graphene</subject><subject>Hydrogen evolution</subject><subject>Nanoclusters</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Quantum chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjktLAzEcxIMoWB8XP0HAi5fVZPPYzVFKfUDBi57L3yRbU7LJNg-w394VxYOnmYHfDIPQFSW3lDB1Z3hIhKqewxFatISThrGuPf7zkp-is5x3hEjFJFug_cpbXVLUUMAfitM4uDlubcDJmqqLiwGXiGEcY3CA3w8YShydBu8PeEpWu2zxskocIETtay42ZZzrNMVUrMFzfZtg-rDB4vjpjL1AJwP4bC9_9Ry9Paxel0_N-uXxeXm_bibKZWmUUIIaKSVVMAw9tIKJvgOiwFKlVTsQognTuleKUy4GwbkhDDrZCjkYMOwc3fzsTinuq81lM7qsrfcQbKx5w0hP27nc0Rm9_ofuYk1hfvdNqZ5JRQX7Ar_8azY</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Shehzad, Aamir</creator><creator>Cui, Chaonan</creator><creator>Cheng, Ran</creator><creator>Luo, Zhixun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240807</creationdate><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><author>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-95951d66619aff8a253587a09ae19c92f00c03cc8994145f544d03a76256fdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Aqueous electrolytes</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Graphene</topic><topic>Hydrogen evolution</topic><topic>Nanoclusters</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shehzad, Aamir</creatorcontrib><creatorcontrib>Cui, Chaonan</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Luo, Zhixun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shehzad, Aamir</au><au>Cui, Chaonan</au><au>Cheng, Ran</au><au>Luo, Zhixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</atitle><jtitle>Nanoscale</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>16</volume><issue>30</issue><spage>14441</spage><epage>14447</epage><pages>14441-14447</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr01984a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-08, Vol.16 (30), p.14441-14447 |
issn | 2040-3364 2040-3372 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_3081299471 |
source | Royal Society Of Chemistry Journals |
subjects | Ammonia Aqueous electrolytes Chemical bonds Chemical reduction Chemical synthesis Graphene Hydrogen evolution Nanoclusters Nitrogen Nitrogenation Quantum chemistry |
title | Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20nitrogen%20reduction%20to%20ammonia%20by%20atomically%20precise%20Cu6%20nanoclusters%20supported%20on%20graphene%20oxide&rft.jtitle=Nanoscale&rft.au=Shehzad,%20Aamir&rft.date=2024-08-07&rft.volume=16&rft.issue=30&rft.spage=14441&rft.epage=14447&rft.pages=14441-14447&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01984a&rft_dat=%3Cproquest%3E3081299471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089836915&rft_id=info:pmid/&rfr_iscdi=true |