Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide

The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-08, Vol.16 (30), p.14441-14447
Hauptverfasser: Shehzad, Aamir, Cui, Chaonan, Cheng, Ran, Luo, Zhixun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14447
container_issue 30
container_start_page 14441
container_title Nanoscale
container_volume 16
creator Shehzad, Aamir
Cui, Chaonan
Cheng, Ran
Luo, Zhixun
description The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).
doi_str_mv 10.1039/d4nr01984a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081299471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081299471</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-95951d66619aff8a253587a09ae19c92f00c03cc8994145f544d03a76256fdad3</originalsourceid><addsrcrecordid>eNpdjktLAzEcxIMoWB8XP0HAi5fVZPPYzVFKfUDBi57L3yRbU7LJNg-w394VxYOnmYHfDIPQFSW3lDB1Z3hIhKqewxFatISThrGuPf7zkp-is5x3hEjFJFug_cpbXVLUUMAfitM4uDlubcDJmqqLiwGXiGEcY3CA3w8YShydBu8PeEpWu2zxskocIETtay42ZZzrNMVUrMFzfZtg-rDB4vjpjL1AJwP4bC9_9Ry9Paxel0_N-uXxeXm_bibKZWmUUIIaKSVVMAw9tIKJvgOiwFKlVTsQognTuleKUy4GwbkhDDrZCjkYMOwc3fzsTinuq81lM7qsrfcQbKx5w0hP27nc0Rm9_ofuYk1hfvdNqZ5JRQX7Ar_8azY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089836915</pqid></control><display><type>article</type><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><source>Royal Society Of Chemistry Journals</source><creator>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</creator><creatorcontrib>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</creatorcontrib><description>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01984a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Aqueous electrolytes ; Chemical bonds ; Chemical reduction ; Chemical synthesis ; Graphene ; Hydrogen evolution ; Nanoclusters ; Nitrogen ; Nitrogenation ; Quantum chemistry</subject><ispartof>Nanoscale, 2024-08, Vol.16 (30), p.14441-14447</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shehzad, Aamir</creatorcontrib><creatorcontrib>Cui, Chaonan</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Luo, Zhixun</creatorcontrib><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><title>Nanoscale</title><description>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</description><subject>Ammonia</subject><subject>Aqueous electrolytes</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Graphene</subject><subject>Hydrogen evolution</subject><subject>Nanoclusters</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Quantum chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjktLAzEcxIMoWB8XP0HAi5fVZPPYzVFKfUDBi57L3yRbU7LJNg-w394VxYOnmYHfDIPQFSW3lDB1Z3hIhKqewxFatISThrGuPf7zkp-is5x3hEjFJFug_cpbXVLUUMAfitM4uDlubcDJmqqLiwGXiGEcY3CA3w8YShydBu8PeEpWu2zxskocIETtay42ZZzrNMVUrMFzfZtg-rDB4vjpjL1AJwP4bC9_9Ry9Paxel0_N-uXxeXm_bibKZWmUUIIaKSVVMAw9tIKJvgOiwFKlVTsQognTuleKUy4GwbkhDDrZCjkYMOwc3fzsTinuq81lM7qsrfcQbKx5w0hP27nc0Rm9_ofuYk1hfvdNqZ5JRQX7Ar_8azY</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Shehzad, Aamir</creator><creator>Cui, Chaonan</creator><creator>Cheng, Ran</creator><creator>Luo, Zhixun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240807</creationdate><title>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</title><author>Shehzad, Aamir ; Cui, Chaonan ; Cheng, Ran ; Luo, Zhixun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-95951d66619aff8a253587a09ae19c92f00c03cc8994145f544d03a76256fdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Aqueous electrolytes</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Graphene</topic><topic>Hydrogen evolution</topic><topic>Nanoclusters</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shehzad, Aamir</creatorcontrib><creatorcontrib>Cui, Chaonan</creatorcontrib><creatorcontrib>Cheng, Ran</creatorcontrib><creatorcontrib>Luo, Zhixun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shehzad, Aamir</au><au>Cui, Chaonan</au><au>Cheng, Ran</au><au>Luo, Zhixun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide</atitle><jtitle>Nanoscale</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>16</volume><issue>30</issue><spage>14441</spage><epage>14447</epage><pages>14441-14447</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>The electrocatalytic nitrogen reduction reaction (NRR) enables the production of ammonia by the use of renewable energy, providing a direct method for nitrogen fixation. Nevertheless, the NRR process under ambient conditions is often impeded by inertness of N2 and the occurrence of hydrogen evolution as a byproduct in aqueous electrolytes, resulting in a diminished reaction rate and reduced efficiency. In this study, we synthesized Cu6(SMPP)6 nanoclusters (Cu6 NCs for short) and immobilized them on graphene oxide (GO) to investigate their electrocatalytic nitrogen reduction reaction (ENRR) using an H-cell setup. The GO-supported Cu6 NCs exhibit enhanced catalysis with a high NH3 yield rate of 4.8 μg h−1 cm−2 and a high faradaic efficiency up to 30.39% at −1.1 V. Quantum chemistry calculations reveal that the Cu6S6 cluster on GO support facilitates the N2 adsorption and N≡N bond activation with a surmountable energy barrier for the potential-determining step (N2* → NNH*).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr01984a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-08, Vol.16 (30), p.14441-14447
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3081299471
source Royal Society Of Chemistry Journals
subjects Ammonia
Aqueous electrolytes
Chemical bonds
Chemical reduction
Chemical synthesis
Graphene
Hydrogen evolution
Nanoclusters
Nitrogen
Nitrogenation
Quantum chemistry
title Electrocatalytic nitrogen reduction to ammonia by atomically precise Cu6 nanoclusters supported on graphene oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20nitrogen%20reduction%20to%20ammonia%20by%20atomically%20precise%20Cu6%20nanoclusters%20supported%20on%20graphene%20oxide&rft.jtitle=Nanoscale&rft.au=Shehzad,%20Aamir&rft.date=2024-08-07&rft.volume=16&rft.issue=30&rft.spage=14441&rft.epage=14447&rft.pages=14441-14447&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01984a&rft_dat=%3Cproquest%3E3081299471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089836915&rft_id=info:pmid/&rfr_iscdi=true