Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets

Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical biology & drug design 2024-07, Vol.104 (1), p.e14591-n/a
Hauptverfasser: Yau, Mei Qian, Wan, Angeline J., Tiong, Aaron S. H., Yiap, Yong Sheng, Loo, Jason S. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e14591
container_title Chemical biology & drug design
container_volume 104
creator Yau, Mei Qian
Wan, Angeline J.
Tiong, Aaron S. H.
Yiap, Yong Sheng
Loo, Jason S. E.
description Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation methods may provide benefit in such cases by reranking these initial predictions. We evaluated the ability of binding pose metadynamics to improve the predicted rankings for three diverse ligands and their six true targets. Initial predictions using pharmacophore mapping showed no true targets ranked in the top 50 and two targets each ranked within the 50–100, 100–150, and 250–300 ranges respectively. Following binding pose metadynamics, ranking of true targets improved for four out of the six targets and included the highest ranked predictions overall, while rankings deteriorated for two targets. The revised rankings predicted two true targets ranked within the top 50, and one target each within the 50–100, 100–150, 150–200, and 200–250 ranges respectively. The findings of this study demonstrate that binding pose metadynamics may be of benefit in refining initial predictions from structure‐based target fishing algorithms, thereby improving the efficiency of the target identification process in drug discovery efforts. The ability of binding pose metadynamics to improve the rankings of true targets predicted via pharmacophore mapping was investigated using three diverse ligands and their six true targets. Binding pose metadynamics improved the predicted rankings for four out of the six true targets, while also providing the highest‐ranked predictions.
doi_str_mv 10.1111/cbdd.14591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081290582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081290582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2181-636c828bec6a284e24876c028016aac5912c53bbb825a3cdfdfda0e2243307283</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlY3_gDJUoSpecwjXWrrCwpudD1kkjvTyDxqklEK_njTju3SBHIvOR8HzkHokpIpDedWFVpPaZzM6BEa0yzOIsJEcnzYs2yEzpz7ICSOEyZO0YjPCA3_6Rj9LOELrKxMW-HCtHo7150D3ICXetPKxiiHfYe7tTeNCYKXtgKPS-NWO9iCNsqbrnW47Cz2KwuAtQmuAa5NJVvtcHiCAibott97uHN0UsrawcXfnKD3x4e3-XO0fH16md8tI8WooFHKUyWYKEClkokYWCyyVIWMhKZSqpCbqYQXRSFYIrnSZbiSAGMx5yRjgk_Q9eC7tt1nD87nIYmCupYtdL3LORGUzUgiWEBvBlTZzjkLZb62ppF2k1OSb9vOt23nu7YDfPXn2xcN6AO6rzcAdAC-TQ2bf6zy-f1iMZj-AgPvjBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081290582</pqid></control><display><type>article</type><title>Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yau, Mei Qian ; Wan, Angeline J. ; Tiong, Aaron S. H. ; Yiap, Yong Sheng ; Loo, Jason S. E.</creator><creatorcontrib>Yau, Mei Qian ; Wan, Angeline J. ; Tiong, Aaron S. H. ; Yiap, Yong Sheng ; Loo, Jason S. E.</creatorcontrib><description>Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation methods may provide benefit in such cases by reranking these initial predictions. We evaluated the ability of binding pose metadynamics to improve the predicted rankings for three diverse ligands and their six true targets. Initial predictions using pharmacophore mapping showed no true targets ranked in the top 50 and two targets each ranked within the 50–100, 100–150, and 250–300 ranges respectively. Following binding pose metadynamics, ranking of true targets improved for four out of the six targets and included the highest ranked predictions overall, while rankings deteriorated for two targets. The revised rankings predicted two true targets ranked within the top 50, and one target each within the 50–100, 100–150, 150–200, and 200–250 ranges respectively. The findings of this study demonstrate that binding pose metadynamics may be of benefit in refining initial predictions from structure‐based target fishing algorithms, thereby improving the efficiency of the target identification process in drug discovery efforts. The ability of binding pose metadynamics to improve the rankings of true targets predicted via pharmacophore mapping was investigated using three diverse ligands and their six true targets. Binding pose metadynamics improved the predicted rankings for four out of the six true targets, while also providing the highest‐ranked predictions.</description><identifier>ISSN: 1747-0277</identifier><identifier>ISSN: 1747-0285</identifier><identifier>EISSN: 1747-0285</identifier><identifier>DOI: 10.1111/cbdd.14591</identifier><identifier>PMID: 39010276</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Binding Sites ; Drug Discovery ; Humans ; Ligands ; metadynamics ; Molecular Docking Simulation ; molecular dynamics ; Molecular Dynamics Simulation ; Protein Binding ; structure based drug design ; target fishing ; target identification</subject><ispartof>Chemical biology &amp; drug design, 2024-07, Vol.104 (1), p.e14591-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2181-636c828bec6a284e24876c028016aac5912c53bbb825a3cdfdfda0e2243307283</cites><orcidid>0000-0001-6976-3282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcbdd.14591$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcbdd.14591$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39010276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yau, Mei Qian</creatorcontrib><creatorcontrib>Wan, Angeline J.</creatorcontrib><creatorcontrib>Tiong, Aaron S. H.</creatorcontrib><creatorcontrib>Yiap, Yong Sheng</creatorcontrib><creatorcontrib>Loo, Jason S. E.</creatorcontrib><title>Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets</title><title>Chemical biology &amp; drug design</title><addtitle>Chem Biol Drug Des</addtitle><description>Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation methods may provide benefit in such cases by reranking these initial predictions. We evaluated the ability of binding pose metadynamics to improve the predicted rankings for three diverse ligands and their six true targets. Initial predictions using pharmacophore mapping showed no true targets ranked in the top 50 and two targets each ranked within the 50–100, 100–150, and 250–300 ranges respectively. Following binding pose metadynamics, ranking of true targets improved for four out of the six targets and included the highest ranked predictions overall, while rankings deteriorated for two targets. The revised rankings predicted two true targets ranked within the top 50, and one target each within the 50–100, 100–150, 150–200, and 200–250 ranges respectively. The findings of this study demonstrate that binding pose metadynamics may be of benefit in refining initial predictions from structure‐based target fishing algorithms, thereby improving the efficiency of the target identification process in drug discovery efforts. The ability of binding pose metadynamics to improve the rankings of true targets predicted via pharmacophore mapping was investigated using three diverse ligands and their six true targets. Binding pose metadynamics improved the predicted rankings for four out of the six true targets, while also providing the highest‐ranked predictions.</description><subject>Algorithms</subject><subject>Binding Sites</subject><subject>Drug Discovery</subject><subject>Humans</subject><subject>Ligands</subject><subject>metadynamics</subject><subject>Molecular Docking Simulation</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><subject>structure based drug design</subject><subject>target fishing</subject><subject>target identification</subject><issn>1747-0277</issn><issn>1747-0285</issn><issn>1747-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlY3_gDJUoSpecwjXWrrCwpudD1kkjvTyDxqklEK_njTju3SBHIvOR8HzkHokpIpDedWFVpPaZzM6BEa0yzOIsJEcnzYs2yEzpz7ICSOEyZO0YjPCA3_6Rj9LOELrKxMW-HCtHo7150D3ICXetPKxiiHfYe7tTeNCYKXtgKPS-NWO9iCNsqbrnW47Cz2KwuAtQmuAa5NJVvtcHiCAibott97uHN0UsrawcXfnKD3x4e3-XO0fH16md8tI8WooFHKUyWYKEClkokYWCyyVIWMhKZSqpCbqYQXRSFYIrnSZbiSAGMx5yRjgk_Q9eC7tt1nD87nIYmCupYtdL3LORGUzUgiWEBvBlTZzjkLZb62ppF2k1OSb9vOt23nu7YDfPXn2xcN6AO6rzcAdAC-TQ2bf6zy-f1iMZj-AgPvjBM</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Yau, Mei Qian</creator><creator>Wan, Angeline J.</creator><creator>Tiong, Aaron S. H.</creator><creator>Yiap, Yong Sheng</creator><creator>Loo, Jason S. E.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6976-3282</orcidid></search><sort><creationdate>202407</creationdate><title>Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets</title><author>Yau, Mei Qian ; Wan, Angeline J. ; Tiong, Aaron S. H. ; Yiap, Yong Sheng ; Loo, Jason S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2181-636c828bec6a284e24876c028016aac5912c53bbb825a3cdfdfda0e2243307283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Binding Sites</topic><topic>Drug Discovery</topic><topic>Humans</topic><topic>Ligands</topic><topic>metadynamics</topic><topic>Molecular Docking Simulation</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><topic>structure based drug design</topic><topic>target fishing</topic><topic>target identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yau, Mei Qian</creatorcontrib><creatorcontrib>Wan, Angeline J.</creatorcontrib><creatorcontrib>Tiong, Aaron S. H.</creatorcontrib><creatorcontrib>Yiap, Yong Sheng</creatorcontrib><creatorcontrib>Loo, Jason S. E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical biology &amp; drug design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yau, Mei Qian</au><au>Wan, Angeline J.</au><au>Tiong, Aaron S. H.</au><au>Yiap, Yong Sheng</au><au>Loo, Jason S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets</atitle><jtitle>Chemical biology &amp; drug design</jtitle><addtitle>Chem Biol Drug Des</addtitle><date>2024-07</date><risdate>2024</risdate><volume>104</volume><issue>1</issue><spage>e14591</spage><epage>n/a</epage><pages>e14591-n/a</pages><issn>1747-0277</issn><issn>1747-0285</issn><eissn>1747-0285</eissn><abstract>Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation methods may provide benefit in such cases by reranking these initial predictions. We evaluated the ability of binding pose metadynamics to improve the predicted rankings for three diverse ligands and their six true targets. Initial predictions using pharmacophore mapping showed no true targets ranked in the top 50 and two targets each ranked within the 50–100, 100–150, and 250–300 ranges respectively. Following binding pose metadynamics, ranking of true targets improved for four out of the six targets and included the highest ranked predictions overall, while rankings deteriorated for two targets. The revised rankings predicted two true targets ranked within the top 50, and one target each within the 50–100, 100–150, 150–200, and 200–250 ranges respectively. The findings of this study demonstrate that binding pose metadynamics may be of benefit in refining initial predictions from structure‐based target fishing algorithms, thereby improving the efficiency of the target identification process in drug discovery efforts. The ability of binding pose metadynamics to improve the rankings of true targets predicted via pharmacophore mapping was investigated using three diverse ligands and their six true targets. Binding pose metadynamics improved the predicted rankings for four out of the six true targets, while also providing the highest‐ranked predictions.</abstract><cop>England</cop><pmid>39010276</pmid><doi>10.1111/cbdd.14591</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6976-3282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1747-0277
ispartof Chemical biology & drug design, 2024-07, Vol.104 (1), p.e14591-n/a
issn 1747-0277
1747-0285
1747-0285
language eng
recordid cdi_proquest_miscellaneous_3081290582
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Binding Sites
Drug Discovery
Humans
Ligands
metadynamics
Molecular Docking Simulation
molecular dynamics
Molecular Dynamics Simulation
Protein Binding
structure based drug design
target fishing
target identification
title Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20binding%20pose%20metadynamics%20to%20optimise%20target%20fishing%20predictions%20for%20three%20diverse%20ligands%20and%20their%20true%20targets&rft.jtitle=Chemical%20biology%20&%20drug%20design&rft.au=Yau,%20Mei%20Qian&rft.date=2024-07&rft.volume=104&rft.issue=1&rft.spage=e14591&rft.epage=n/a&rft.pages=e14591-n/a&rft.issn=1747-0277&rft.eissn=1747-0285&rft_id=info:doi/10.1111/cbdd.14591&rft_dat=%3Cproquest_cross%3E3081290582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081290582&rft_id=info:pmid/39010276&rfr_iscdi=true