Enzyme‐Triggered Assembly of Glycan Nanomaterials

A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (42), p.e202410634-n/a
Hauptverfasser: Trijp, Jacobus P., Hribernik, Nives, Lim, Jia Hui, Dal Colle, Marlene C. S., Mena, Yadiel Vázquez, Ogawa, Yu, Delbianco, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page e202410634
container_title Angewandte Chemie International Edition
container_volume 63
creator Trijp, Jacobus P.
Hribernik, Nives
Lim, Jia Hui
Dal Colle, Marlene C. S.
Mena, Yadiel Vázquez
Ogawa, Yu
Delbianco, Martina
description A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures. A phosphorylation‐assisted strategy granted access to previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, allowing for molecular insights into the aggregation behavior of carbohydrates.
doi_str_mv 10.1002/anie.202410634
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081289532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113481631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-d429f063513eebcb41d1065150d1bbcccf80bc82797cf81ca8995940713625223</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EolBYGVElFpYUX_8k9lhVpVSqylJmy3GcKlV-it0IhYlH4Bl5Ely1FImF6Z7hu0dHH0I3gIeAMXnQdWGHBBMGOKbsBF0AJxDRJKGnITNKo0Rw6KFL79eBFwLH56hHJcYipvwC0Un93lX26-Nz6YrVyjqbDUbe2yotu0GTD6ZlZ3Q9WOi6qfTWukKX_gqd5eHY68Pto5fHyXL8FM2fp7PxaB4ZwgWLMkZkHlZxoNamJmWQhZEcOM4gTY0xucCpESSRSYhgtJCSS4YToDHhhNA-ut_3blzz2lq_VVXhjS1LXdum9YpiAURITnfo3R903bSuDusUBaBMQEwhUMM9ZVzjvbO52rii0q5TgNVOp9rpVEed4eH2UNumlc2O-I-_AMg98FaUtvunTo0Ws8lv-Tc4_X-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113481631</pqid></control><display><type>article</type><title>Enzyme‐Triggered Assembly of Glycan Nanomaterials</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Trijp, Jacobus P. ; Hribernik, Nives ; Lim, Jia Hui ; Dal Colle, Marlene C. S. ; Mena, Yadiel Vázquez ; Ogawa, Yu ; Delbianco, Martina</creator><creatorcontrib>Trijp, Jacobus P. ; Hribernik, Nives ; Lim, Jia Hui ; Dal Colle, Marlene C. S. ; Mena, Yadiel Vázquez ; Ogawa, Yu ; Delbianco, Martina</creatorcontrib><description>A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures. A phosphorylation‐assisted strategy granted access to previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, allowing for molecular insights into the aggregation behavior of carbohydrates.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202410634</identifier><identifier>PMID: 39008635</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aggregation behavior ; Assembly ; Carbohydrates ; Cellulose ; Cellulose - chemistry ; Chitin ; Chitin - chemistry ; Chitin - metabolism ; Cryo-TEM ; Electron diffraction ; Electron microscopy ; Enzymes ; Glycan ; Glycans ; Morphology ; Nanomaterials ; Nanostructures - chemistry ; Nanotechnology ; Oligomers ; Oligosaccharides ; Phosphorylation ; Polysaccharides - chemistry ; Polysaccharides - metabolism ; Xylan ; Xylans - chemistry ; Xylans - metabolism</subject><ispartof>Angewandte Chemie International Edition, 2024-10, Vol.63 (42), p.e202410634-n/a</ispartof><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2584-d429f063513eebcb41d1065150d1bbcccf80bc82797cf81ca8995940713625223</cites><orcidid>0000-0002-4580-9597 ; 0000-0003-0677-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202410634$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202410634$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39008635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trijp, Jacobus P.</creatorcontrib><creatorcontrib>Hribernik, Nives</creatorcontrib><creatorcontrib>Lim, Jia Hui</creatorcontrib><creatorcontrib>Dal Colle, Marlene C. S.</creatorcontrib><creatorcontrib>Mena, Yadiel Vázquez</creatorcontrib><creatorcontrib>Ogawa, Yu</creatorcontrib><creatorcontrib>Delbianco, Martina</creatorcontrib><title>Enzyme‐Triggered Assembly of Glycan Nanomaterials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures. A phosphorylation‐assisted strategy granted access to previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, allowing for molecular insights into the aggregation behavior of carbohydrates.</description><subject>Aggregation behavior</subject><subject>Assembly</subject><subject>Carbohydrates</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chitin</subject><subject>Chitin - chemistry</subject><subject>Chitin - metabolism</subject><subject>Cryo-TEM</subject><subject>Electron diffraction</subject><subject>Electron microscopy</subject><subject>Enzymes</subject><subject>Glycan</subject><subject>Glycans</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Oligomers</subject><subject>Oligosaccharides</subject><subject>Phosphorylation</subject><subject>Polysaccharides - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Xylan</subject><subject>Xylans - chemistry</subject><subject>Xylans - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkL1OwzAUhS0EolBYGVElFpYUX_8k9lhVpVSqylJmy3GcKlV-it0IhYlH4Bl5Ely1FImF6Z7hu0dHH0I3gIeAMXnQdWGHBBMGOKbsBF0AJxDRJKGnITNKo0Rw6KFL79eBFwLH56hHJcYipvwC0Un93lX26-Nz6YrVyjqbDUbe2yotu0GTD6ZlZ3Q9WOi6qfTWukKX_gqd5eHY68Pto5fHyXL8FM2fp7PxaB4ZwgWLMkZkHlZxoNamJmWQhZEcOM4gTY0xucCpESSRSYhgtJCSS4YToDHhhNA-ut_3blzz2lq_VVXhjS1LXdum9YpiAURITnfo3R903bSuDusUBaBMQEwhUMM9ZVzjvbO52rii0q5TgNVOp9rpVEed4eH2UNumlc2O-I-_AMg98FaUtvunTo0Ws8lv-Tc4_X-V</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Trijp, Jacobus P.</creator><creator>Hribernik, Nives</creator><creator>Lim, Jia Hui</creator><creator>Dal Colle, Marlene C. S.</creator><creator>Mena, Yadiel Vázquez</creator><creator>Ogawa, Yu</creator><creator>Delbianco, Martina</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4580-9597</orcidid><orcidid>https://orcid.org/0000-0003-0677-7913</orcidid></search><sort><creationdate>20241014</creationdate><title>Enzyme‐Triggered Assembly of Glycan Nanomaterials</title><author>Trijp, Jacobus P. ; Hribernik, Nives ; Lim, Jia Hui ; Dal Colle, Marlene C. S. ; Mena, Yadiel Vázquez ; Ogawa, Yu ; Delbianco, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-d429f063513eebcb41d1065150d1bbcccf80bc82797cf81ca8995940713625223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregation behavior</topic><topic>Assembly</topic><topic>Carbohydrates</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chitin</topic><topic>Chitin - chemistry</topic><topic>Chitin - metabolism</topic><topic>Cryo-TEM</topic><topic>Electron diffraction</topic><topic>Electron microscopy</topic><topic>Enzymes</topic><topic>Glycan</topic><topic>Glycans</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Oligomers</topic><topic>Oligosaccharides</topic><topic>Phosphorylation</topic><topic>Polysaccharides - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Xylan</topic><topic>Xylans - chemistry</topic><topic>Xylans - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trijp, Jacobus P.</creatorcontrib><creatorcontrib>Hribernik, Nives</creatorcontrib><creatorcontrib>Lim, Jia Hui</creatorcontrib><creatorcontrib>Dal Colle, Marlene C. S.</creatorcontrib><creatorcontrib>Mena, Yadiel Vázquez</creatorcontrib><creatorcontrib>Ogawa, Yu</creatorcontrib><creatorcontrib>Delbianco, Martina</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trijp, Jacobus P.</au><au>Hribernik, Nives</au><au>Lim, Jia Hui</au><au>Dal Colle, Marlene C. S.</au><au>Mena, Yadiel Vázquez</au><au>Ogawa, Yu</au><au>Delbianco, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme‐Triggered Assembly of Glycan Nanomaterials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-10-14</date><risdate>2024</risdate><volume>63</volume><issue>42</issue><spage>e202410634</spage><epage>n/a</epage><pages>e202410634-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures. A phosphorylation‐assisted strategy granted access to previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, allowing for molecular insights into the aggregation behavior of carbohydrates.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39008635</pmid><doi>10.1002/anie.202410634</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4580-9597</orcidid><orcidid>https://orcid.org/0000-0003-0677-7913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-10, Vol.63 (42), p.e202410634-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3081289532
source MEDLINE; Wiley Online Library All Journals
subjects Aggregation behavior
Assembly
Carbohydrates
Cellulose
Cellulose - chemistry
Chitin
Chitin - chemistry
Chitin - metabolism
Cryo-TEM
Electron diffraction
Electron microscopy
Enzymes
Glycan
Glycans
Morphology
Nanomaterials
Nanostructures - chemistry
Nanotechnology
Oligomers
Oligosaccharides
Phosphorylation
Polysaccharides - chemistry
Polysaccharides - metabolism
Xylan
Xylans - chemistry
Xylans - metabolism
title Enzyme‐Triggered Assembly of Glycan Nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%E2%80%90Triggered%20Assembly%20of%20Glycan%20Nanomaterials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Trijp,%20Jacobus%20P.&rft.date=2024-10-14&rft.volume=63&rft.issue=42&rft.spage=e202410634&rft.epage=n/a&rft.pages=e202410634-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202410634&rft_dat=%3Cproquest_cross%3E3113481631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113481631&rft_id=info:pmid/39008635&rfr_iscdi=true