Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications
Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear med...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 33 |
container_start_page | 887 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 12 |
creator | Wulfmeier, Katarzyna M Blower, Philip J Fajardo, Galo Paez Huband, Steven de Rosales, Rafael T. M Walker, David Terry, Samantha YA Abbate, Vincenzo Pellico, Juan |
description | Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and
201
Tl is essential for identifying the physicochemical and radiochemical properties required for optimal
in vivo
performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [
201
Tl] thallium(
i
) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K
+
content, confirming that Tl
+
ions replace K
+
and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with
201
Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for
201
Tl.
Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism. |
doi_str_mv | 10.1039/d4tb01203h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3080636591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095443861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</originalsourceid><addsrcrecordid>eNpdks1rFTEUxYNYbGm7ca8E3Igw9WbyMZmVaP2oUNFFBXchyWR8eWSSaTIj-N-b56uvaja54fw4nMsJQo8JXBCg_cuBLQZIC3TzAJ20wKHpOJEPDzN8O0bnpWyhHkmEpOwROqY9QNdycYK2n5zd6OjLVHAasY82rMWnuHssGx2CX6emBVKVJeEveS3F64hNWB2OOqZZ58Xb4AoeU8ZxraPOeHKDtz46rOc5eKuX6ljO0NGoQ3Hnd_cp-vr-3c3lVXP9-cPHy9fXjaVELg0V0EtHjGMd0A5AG9NS2wpimO4GyQdpuDHScmB6oF1rYBSdM4wKZnhvBT1Fr_a-82pqEOviknVQc_aTzj9V0l79q0S_Ud_TD0UIZUAZrQ7P7xxyul1dWdTki3Uh6OjSWhQFCYIK3pOKPvsP3aY1x7pfpXrOGJViR73YUzanUrIbD2kIqF2N6i27efO7xqsKP_07_wH9U1oFnuyBXOxBvf8H9BcuZKLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095443861</pqid></control><display><type>article</type><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</creator><creatorcontrib>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</creatorcontrib><description>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and
201
Tl is essential for identifying the physicochemical and radiochemical properties required for optimal
in vivo
performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [
201
Tl] thallium(
i
) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K
+
content, confirming that Tl
+
ions replace K
+
and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with
201
Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for
201
Tl.
Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb01203h</identifier><identifier>PMID: 39007256</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Biological effects ; Biological properties ; Cations ; Cesium 137 ; Chemistry ; Composition ; Crystal structure ; Ferrocyanides - chemistry ; In vivo methods and tests ; Iron ; Metal ions ; Nanoparticles ; Nanoparticles - chemistry ; Nuclear Medicine ; Particle Size ; Performance evaluation ; Pigments ; Radiochemistry ; Radiolabelling ; Structural analysis ; Thallium ; Thallium - chemistry ; Thallium isotopes ; Thallium Radioisotopes - chemistry ; Thallium-201</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</cites><orcidid>0000-0003-2787-8641 ; 0000-0001-6290-1590 ; 0000-0003-4742-4399 ; 0000-0003-0431-0535 ; 0000-0003-0639-2896 ; 0000-0002-8583-4279 ; 0000-0002-3300-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39007256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wulfmeier, Katarzyna M</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Fajardo, Galo Paez</creatorcontrib><creatorcontrib>Huband, Steven</creatorcontrib><creatorcontrib>de Rosales, Rafael T. M</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Terry, Samantha YA</creatorcontrib><creatorcontrib>Abbate, Vincenzo</creatorcontrib><creatorcontrib>Pellico, Juan</creatorcontrib><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and
201
Tl is essential for identifying the physicochemical and radiochemical properties required for optimal
in vivo
performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [
201
Tl] thallium(
i
) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K
+
content, confirming that Tl
+
ions replace K
+
and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with
201
Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for
201
Tl.
Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</description><subject>Binding</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>Cations</subject><subject>Cesium 137</subject><subject>Chemistry</subject><subject>Composition</subject><subject>Crystal structure</subject><subject>Ferrocyanides - chemistry</subject><subject>In vivo methods and tests</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nuclear Medicine</subject><subject>Particle Size</subject><subject>Performance evaluation</subject><subject>Pigments</subject><subject>Radiochemistry</subject><subject>Radiolabelling</subject><subject>Structural analysis</subject><subject>Thallium</subject><subject>Thallium - chemistry</subject><subject>Thallium isotopes</subject><subject>Thallium Radioisotopes - chemistry</subject><subject>Thallium-201</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks1rFTEUxYNYbGm7ca8E3Igw9WbyMZmVaP2oUNFFBXchyWR8eWSSaTIj-N-b56uvaja54fw4nMsJQo8JXBCg_cuBLQZIC3TzAJ20wKHpOJEPDzN8O0bnpWyhHkmEpOwROqY9QNdycYK2n5zd6OjLVHAasY82rMWnuHssGx2CX6emBVKVJeEveS3F64hNWB2OOqZZ58Xb4AoeU8ZxraPOeHKDtz46rOc5eKuX6ljO0NGoQ3Hnd_cp-vr-3c3lVXP9-cPHy9fXjaVELg0V0EtHjGMd0A5AG9NS2wpimO4GyQdpuDHScmB6oF1rYBSdM4wKZnhvBT1Fr_a-82pqEOviknVQc_aTzj9V0l79q0S_Ud_TD0UIZUAZrQ7P7xxyul1dWdTki3Uh6OjSWhQFCYIK3pOKPvsP3aY1x7pfpXrOGJViR73YUzanUrIbD2kIqF2N6i27efO7xqsKP_07_wH9U1oFnuyBXOxBvf8H9BcuZKLI</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Wulfmeier, Katarzyna M</creator><creator>Blower, Philip J</creator><creator>Fajardo, Galo Paez</creator><creator>Huband, Steven</creator><creator>de Rosales, Rafael T. M</creator><creator>Walker, David</creator><creator>Terry, Samantha YA</creator><creator>Abbate, Vincenzo</creator><creator>Pellico, Juan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2787-8641</orcidid><orcidid>https://orcid.org/0000-0001-6290-1590</orcidid><orcidid>https://orcid.org/0000-0003-4742-4399</orcidid><orcidid>https://orcid.org/0000-0003-0431-0535</orcidid><orcidid>https://orcid.org/0000-0003-0639-2896</orcidid><orcidid>https://orcid.org/0000-0002-8583-4279</orcidid><orcidid>https://orcid.org/0000-0002-3300-0520</orcidid></search><sort><creationdate>20240822</creationdate><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><author>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>Cations</topic><topic>Cesium 137</topic><topic>Chemistry</topic><topic>Composition</topic><topic>Crystal structure</topic><topic>Ferrocyanides - chemistry</topic><topic>In vivo methods and tests</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nuclear Medicine</topic><topic>Particle Size</topic><topic>Performance evaluation</topic><topic>Pigments</topic><topic>Radiochemistry</topic><topic>Radiolabelling</topic><topic>Structural analysis</topic><topic>Thallium</topic><topic>Thallium - chemistry</topic><topic>Thallium isotopes</topic><topic>Thallium Radioisotopes - chemistry</topic><topic>Thallium-201</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wulfmeier, Katarzyna M</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Fajardo, Galo Paez</creatorcontrib><creatorcontrib>Huband, Steven</creatorcontrib><creatorcontrib>de Rosales, Rafael T. M</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Terry, Samantha YA</creatorcontrib><creatorcontrib>Abbate, Vincenzo</creatorcontrib><creatorcontrib>Pellico, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wulfmeier, Katarzyna M</au><au>Blower, Philip J</au><au>Fajardo, Galo Paez</au><au>Huband, Steven</au><au>de Rosales, Rafael T. M</au><au>Walker, David</au><au>Terry, Samantha YA</au><au>Abbate, Vincenzo</au><au>Pellico, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>12</volume><issue>33</issue><spage>887</spage><epage>898</epage><pages>887-898</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and
201
Tl is essential for identifying the physicochemical and radiochemical properties required for optimal
in vivo
performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [
201
Tl] thallium(
i
) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K
+
content, confirming that Tl
+
ions replace K
+
and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with
201
Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for
201
Tl.
Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39007256</pmid><doi>10.1039/d4tb01203h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2787-8641</orcidid><orcidid>https://orcid.org/0000-0001-6290-1590</orcidid><orcidid>https://orcid.org/0000-0003-4742-4399</orcidid><orcidid>https://orcid.org/0000-0003-0431-0535</orcidid><orcidid>https://orcid.org/0000-0003-0639-2896</orcidid><orcidid>https://orcid.org/0000-0002-8583-4279</orcidid><orcidid>https://orcid.org/0000-0002-3300-0520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898 |
issn | 2050-750X 2050-7518 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_3080636591 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Binding Biological effects Biological properties Cations Cesium 137 Chemistry Composition Crystal structure Ferrocyanides - chemistry In vivo methods and tests Iron Metal ions Nanoparticles Nanoparticles - chemistry Nuclear Medicine Particle Size Performance evaluation Pigments Radiochemistry Radiolabelling Structural analysis Thallium Thallium - chemistry Thallium isotopes Thallium Radioisotopes - chemistry Thallium-201 |
title | Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20inclusion%20of%20thallium-201%20into%20Prussian%20blue%20nanoparticles%20for%20nuclear%20medicine%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Wulfmeier,%20Katarzyna%20M&rft.date=2024-08-22&rft.volume=12&rft.issue=33&rft.spage=887&rft.epage=898&rft.pages=887-898&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb01203h&rft_dat=%3Cproquest_pubme%3E3095443861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095443861&rft_id=info:pmid/39007256&rfr_iscdi=true |