Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications

Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898
Hauptverfasser: Wulfmeier, Katarzyna M, Blower, Philip J, Fajardo, Galo Paez, Huband, Steven, de Rosales, Rafael T. M, Walker, David, Terry, Samantha YA, Abbate, Vincenzo, Pellico, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 33
container_start_page 887
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 12
creator Wulfmeier, Katarzyna M
Blower, Philip J
Fajardo, Galo Paez
Huband, Steven
de Rosales, Rafael T. M
Walker, David
Terry, Samantha YA
Abbate, Vincenzo
Pellico, Juan
description Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and 201 Tl is essential for identifying the physicochemical and radiochemical properties required for optimal in vivo performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [ 201 Tl] thallium( i ) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K + content, confirming that Tl + ions replace K + and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with 201 Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for 201 Tl. Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.
doi_str_mv 10.1039/d4tb01203h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3080636591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095443861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</originalsourceid><addsrcrecordid>eNpdks1rFTEUxYNYbGm7ca8E3Igw9WbyMZmVaP2oUNFFBXchyWR8eWSSaTIj-N-b56uvaja54fw4nMsJQo8JXBCg_cuBLQZIC3TzAJ20wKHpOJEPDzN8O0bnpWyhHkmEpOwROqY9QNdycYK2n5zd6OjLVHAasY82rMWnuHssGx2CX6emBVKVJeEveS3F64hNWB2OOqZZ58Xb4AoeU8ZxraPOeHKDtz46rOc5eKuX6ljO0NGoQ3Hnd_cp-vr-3c3lVXP9-cPHy9fXjaVELg0V0EtHjGMd0A5AG9NS2wpimO4GyQdpuDHScmB6oF1rYBSdM4wKZnhvBT1Fr_a-82pqEOviknVQc_aTzj9V0l79q0S_Ud_TD0UIZUAZrQ7P7xxyul1dWdTki3Uh6OjSWhQFCYIK3pOKPvsP3aY1x7pfpXrOGJViR73YUzanUrIbD2kIqF2N6i27efO7xqsKP_07_wH9U1oFnuyBXOxBvf8H9BcuZKLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095443861</pqid></control><display><type>article</type><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</creator><creatorcontrib>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</creatorcontrib><description>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and 201 Tl is essential for identifying the physicochemical and radiochemical properties required for optimal in vivo performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [ 201 Tl] thallium( i ) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K + content, confirming that Tl + ions replace K + and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with 201 Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for 201 Tl. Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb01203h</identifier><identifier>PMID: 39007256</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Biological effects ; Biological properties ; Cations ; Cesium 137 ; Chemistry ; Composition ; Crystal structure ; Ferrocyanides - chemistry ; In vivo methods and tests ; Iron ; Metal ions ; Nanoparticles ; Nanoparticles - chemistry ; Nuclear Medicine ; Particle Size ; Performance evaluation ; Pigments ; Radiochemistry ; Radiolabelling ; Structural analysis ; Thallium ; Thallium - chemistry ; Thallium isotopes ; Thallium Radioisotopes - chemistry ; Thallium-201</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</cites><orcidid>0000-0003-2787-8641 ; 0000-0001-6290-1590 ; 0000-0003-4742-4399 ; 0000-0003-0431-0535 ; 0000-0003-0639-2896 ; 0000-0002-8583-4279 ; 0000-0002-3300-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39007256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wulfmeier, Katarzyna M</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Fajardo, Galo Paez</creatorcontrib><creatorcontrib>Huband, Steven</creatorcontrib><creatorcontrib>de Rosales, Rafael T. M</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Terry, Samantha YA</creatorcontrib><creatorcontrib>Abbate, Vincenzo</creatorcontrib><creatorcontrib>Pellico, Juan</creatorcontrib><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and 201 Tl is essential for identifying the physicochemical and radiochemical properties required for optimal in vivo performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [ 201 Tl] thallium( i ) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K + content, confirming that Tl + ions replace K + and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with 201 Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for 201 Tl. Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</description><subject>Binding</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>Cations</subject><subject>Cesium 137</subject><subject>Chemistry</subject><subject>Composition</subject><subject>Crystal structure</subject><subject>Ferrocyanides - chemistry</subject><subject>In vivo methods and tests</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nuclear Medicine</subject><subject>Particle Size</subject><subject>Performance evaluation</subject><subject>Pigments</subject><subject>Radiochemistry</subject><subject>Radiolabelling</subject><subject>Structural analysis</subject><subject>Thallium</subject><subject>Thallium - chemistry</subject><subject>Thallium isotopes</subject><subject>Thallium Radioisotopes - chemistry</subject><subject>Thallium-201</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks1rFTEUxYNYbGm7ca8E3Igw9WbyMZmVaP2oUNFFBXchyWR8eWSSaTIj-N-b56uvaja54fw4nMsJQo8JXBCg_cuBLQZIC3TzAJ20wKHpOJEPDzN8O0bnpWyhHkmEpOwROqY9QNdycYK2n5zd6OjLVHAasY82rMWnuHssGx2CX6emBVKVJeEveS3F64hNWB2OOqZZ58Xb4AoeU8ZxraPOeHKDtz46rOc5eKuX6ljO0NGoQ3Hnd_cp-vr-3c3lVXP9-cPHy9fXjaVELg0V0EtHjGMd0A5AG9NS2wpimO4GyQdpuDHScmB6oF1rYBSdM4wKZnhvBT1Fr_a-82pqEOviknVQc_aTzj9V0l79q0S_Ud_TD0UIZUAZrQ7P7xxyul1dWdTki3Uh6OjSWhQFCYIK3pOKPvsP3aY1x7pfpXrOGJViR73YUzanUrIbD2kIqF2N6i27efO7xqsKP_07_wH9U1oFnuyBXOxBvf8H9BcuZKLI</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Wulfmeier, Katarzyna M</creator><creator>Blower, Philip J</creator><creator>Fajardo, Galo Paez</creator><creator>Huband, Steven</creator><creator>de Rosales, Rafael T. M</creator><creator>Walker, David</creator><creator>Terry, Samantha YA</creator><creator>Abbate, Vincenzo</creator><creator>Pellico, Juan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2787-8641</orcidid><orcidid>https://orcid.org/0000-0001-6290-1590</orcidid><orcidid>https://orcid.org/0000-0003-4742-4399</orcidid><orcidid>https://orcid.org/0000-0003-0431-0535</orcidid><orcidid>https://orcid.org/0000-0003-0639-2896</orcidid><orcidid>https://orcid.org/0000-0002-8583-4279</orcidid><orcidid>https://orcid.org/0000-0002-3300-0520</orcidid></search><sort><creationdate>20240822</creationdate><title>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</title><author>Wulfmeier, Katarzyna M ; Blower, Philip J ; Fajardo, Galo Paez ; Huband, Steven ; de Rosales, Rafael T. M ; Walker, David ; Terry, Samantha YA ; Abbate, Vincenzo ; Pellico, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-36098e1be4703700abb23c261b4a7d85d8b5bb8c504ad372b0f67eb4364b59c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>Cations</topic><topic>Cesium 137</topic><topic>Chemistry</topic><topic>Composition</topic><topic>Crystal structure</topic><topic>Ferrocyanides - chemistry</topic><topic>In vivo methods and tests</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nuclear Medicine</topic><topic>Particle Size</topic><topic>Performance evaluation</topic><topic>Pigments</topic><topic>Radiochemistry</topic><topic>Radiolabelling</topic><topic>Structural analysis</topic><topic>Thallium</topic><topic>Thallium - chemistry</topic><topic>Thallium isotopes</topic><topic>Thallium Radioisotopes - chemistry</topic><topic>Thallium-201</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wulfmeier, Katarzyna M</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Fajardo, Galo Paez</creatorcontrib><creatorcontrib>Huband, Steven</creatorcontrib><creatorcontrib>de Rosales, Rafael T. M</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Terry, Samantha YA</creatorcontrib><creatorcontrib>Abbate, Vincenzo</creatorcontrib><creatorcontrib>Pellico, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wulfmeier, Katarzyna M</au><au>Blower, Philip J</au><au>Fajardo, Galo Paez</au><au>Huband, Steven</au><au>de Rosales, Rafael T. M</au><au>Walker, David</au><au>Terry, Samantha YA</au><au>Abbate, Vincenzo</au><au>Pellico, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>12</volume><issue>33</issue><spage>887</spage><epage>898</epage><pages>887-898</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Prussian blue is known for its high affinity for thallium and other univalent metal cations and has been used as a treatment for radiocaesium and thallium/radiothallium poisoning. While Prussian blue nanoparticles (PBNPs) show potential for binding radioactive thallium for further use in nuclear medicine applications, the inclusion mechanism remains elusive. Understanding the interaction between PBNPs and 201 Tl is essential for identifying the physicochemical and radiochemical properties required for optimal in vivo performance. In this work, we evaluated the binding mechanism between Tl and PBNPs with different coatings and core shapes. Combining PBNPs with [ 201 Tl] thallium( i ) chloride provided high radiolabelling yields and radiochemical stabilities under physiological conditions. Comprehensive characterisation by different X-ray techniques confirmed that Tl ions are located in the interstitial sites within the crystal structure, maintaining the integrity of the iron (Fe) 4p electronic distribution and inducing local modifications in the nearby C-N ligands. Additionally, this inclusion does not impact the core or the shell of the nanoparticles but does alter their ionic composition. The PB ionic network undergoes significant changes, with a substantial drop in K + content, confirming that Tl + ions replace K + and occupy additional spaces within the crystal structure. These results open new opportunities in nuclear medicine applications with 201 Tl-PBNPs where the size, shape and composition of the particles can be specifically tuned depending on the desired biological properties without affecting the radiochemical performance as a vehicle for 201 Tl. Prussian blue nanoparticles are radiolabelled with Tl-201 and characterised to provide the unambiguous confirmation of the inclusion mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39007256</pmid><doi>10.1039/d4tb01203h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2787-8641</orcidid><orcidid>https://orcid.org/0000-0001-6290-1590</orcidid><orcidid>https://orcid.org/0000-0003-4742-4399</orcidid><orcidid>https://orcid.org/0000-0003-0431-0535</orcidid><orcidid>https://orcid.org/0000-0003-0639-2896</orcidid><orcidid>https://orcid.org/0000-0002-8583-4279</orcidid><orcidid>https://orcid.org/0000-0002-3300-0520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (33), p.887-898
issn 2050-750X
2050-7518
2050-7518
language eng
recordid cdi_proquest_miscellaneous_3080636591
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Binding
Biological effects
Biological properties
Cations
Cesium 137
Chemistry
Composition
Crystal structure
Ferrocyanides - chemistry
In vivo methods and tests
Iron
Metal ions
Nanoparticles
Nanoparticles - chemistry
Nuclear Medicine
Particle Size
Performance evaluation
Pigments
Radiochemistry
Radiolabelling
Structural analysis
Thallium
Thallium - chemistry
Thallium isotopes
Thallium Radioisotopes - chemistry
Thallium-201
title Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20inclusion%20of%20thallium-201%20into%20Prussian%20blue%20nanoparticles%20for%20nuclear%20medicine%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Wulfmeier,%20Katarzyna%20M&rft.date=2024-08-22&rft.volume=12&rft.issue=33&rft.spage=887&rft.epage=898&rft.pages=887-898&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb01203h&rft_dat=%3Cproquest_pubme%3E3095443861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095443861&rft_id=info:pmid/39007256&rfr_iscdi=true